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Abstract. This paper considers the problem of learning task specific web-service descriptions from traces of users successfully
completing a task. Unlike prior approaches, we take a traditional machine-learning perspective to the construction ofweb-
service models from data. Our representation models both syntactic features of web-service schemas (including lists and optional
elements), as well as semantic relations between objects inthe task. Together, these learned models form a full schematic
model of the dataflow. Our theoretical results, which are themain novelty in the paper, show that this structure can be learned
efficiently: the number of traces required for learning grows polynomially with the size of the task. We also present real-world
task descriptions mined from tasks using online services from Amazon and Google.
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1. Introduction

The growing availability of web services (interfaces
for programs to send and acquire data from web sites)
has revolutionized the way applications interact with
the World Wide Web. Although in practice most ser-
vices are chained together manually, researchers have
embraced the problem of automatic service composi-
tion, especially within the Semantic Web and Web Ser-
vice communities. Essential to almost all of these ap-
proaches, especially ones based on AI [6,14,15,22],
is some formal description of thesyntax and seman-
tics of a service. Unfortunately, such formal descrip-
tions (especially of semantics) are rarely encountered
in practice. In addition, even if semantic descrip-
tions are provided, when services come from multiple
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providers they are almost always incompatible. There-
fore learning web-service descriptions from experi-
ence, rather than relying on hand-coded descriptions or
background ontologies [12,11] is a natural and prag-
matic approach for modeling web-service behavior.

In this work, we consider a machine-learning ap-
proach to build descriptions of how the inputs and out-
puts of services are related, both for a single service
and for a sequence of services comprising a task (such
as looking up flights and then booking the one with the
minimum price). The inputs to this algorithm are XML
documents containing instances of the inputs and out-
puts of each service in the task. Suchtracesof ser-
vices in a task can easily be collected in practice. The
system uses this data to refine its hypothesis about the
structureandmeaningof the services, specifically fo-
cussing on semantic relations between concepts in the
dataflow. We have chosen this (essentially supervised)
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learning protocol because it allows our system to learn
the descriptions of service-based tasks simply by ob-
serving (perhaps completely non-technical) users nat-
urally performing a task. For instance, if we are train-
ing the service to search and book flights using ser-
vices like the one in Figures 1 and 2, the system could
be trained simply by watching a person perform their
normal search and purchase routines, even if they can’t
perfectly describe their methods.

More specifically, we use an apprenticeship learn-
ing [1,28] protocol where agents attempt to execute
services to complete a task, and when they fail to do so
(as judged by a human observer or some fixed rules),
a human generated trace demonstrating the task is pro-
vided, either from stored examples or from a human
supervisor. Again, the users here only need to under-
stand how to execute the task using their normal ser-
vice interface. They do not need any special training
on how the machine learning algorithm works, nor any
knowledge of semantic modeling languages or formal
notation. In this way, the supervisor acts as ateacher,
who can step in when the system make an incorrect
prediction or gives the wrong inputs to a service, and
either show it how to complete the current task or give
it a similar task from stored traces where the situation
was handled properly.

This approach stands in contrast to other efforts in
aiding technical [16] and non-technical [18] users to
encode a control flow (such as the one in Figure 2)
through service-composition interfaces. Unlike these
methods, which rely on the user being able to use this
softwareandhave perfect knowledge of their dataflow,
our system can learn service descriptions simply by
watching people use the services as they always do
(perhaps not even realizing they are calling services),
even if they are unable to perfectly describe the rea-
sons they use the services in a certain way. In cases
where users feel confident using service composition
interfaces, they could of course be used to bootstrap
the models used in this paper.

Our learning problem also differs from previous ef-
forts that used existing ontologies to learn “data se-
mantics” of service arguments. That is, as noted in
[21], and in the design of a number of languages for de-
scribing services and their semantics (e.g., WSDL-S,
METEOR-S [20]) there are two kinds of semantics one
needs to attach to a basic syntactic service description:
(i) “data semantics” about the arguments (usually con-
cepts from some ontology), and (ii) more traditional
“functional semantics” on the relationship between in-
puts and outputs, and the outcome of each service. Ma-

chine learning has been applied to the first kind of se-
mantics when an ontology is available [11,5,12], and
while this is an essential task, we focus here on the or-
thogonal task of learning the functional semantics of
services.

Our work can also be seen as complementary to
work in the planning community on finding sequences
of web service calls that will achieve a goal [6,14,15].
All of these works considered the case where the
model of each service (how its inputs and outputs
are related) is given. In contrast, our work is about
building such models from data (learning rather than
planning). However, we note that unlike many opera-
tors used in the planning community, the semantic de-
scriptions learned by our system are task specific—
their semantics are only valid within the context of
the learned task. For instance, if a task involves buy-
ing the cheapest item on a list, a semantic link of
“min” might be learned from the “price” output of a
search service to the input “payment” of a purchas-
ing service, even though this link is not necessary in
all tasks. Our approach sacrifices the full generality
of task-independent operators and the expressiveness
of complex workflows for tractability and applicabil-
ity to naturally occurring tasks. We discuss some chal-
lenges of resolving this conflict by mining more task-
independent operators in Section 7.3 and integrating
more expressive workflows (including those that might
model transaction failures and exception handling) in
Section 8.

Because our approach is data driven, we are partic-
ularly concerned with thesample complexityof learn-
ing, a theoretical quantification of how much interac-
tion is required with an environment to build an accu-
rate model. The theoretical sample complexity results
proved in this paper give an upper bound on the num-
ber of times the teacher needs to “step in”, and the em-
pirical evidence we have collected on real-world appli-
cations indicates the number of interventions needed
to fully learn a task is usually far smaller than these
worst case bounds.

The machine-learning algorithms in this work can
be viewed as novel instantiations of classical ideas, but
their application to this domain requires many nuanced
and innovative design choices. Moreover, the formula-
tion of task-description mining as a machine-learning
problem yields theoretical results showing the prob-
lem is tractable and our empirical studies show the ap-
proach is effective in several natural real-world prob-
lems. This novel approach opens the door to a new way
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of looking at web-service descriptions that is not be-
holden to pre-packaged or hand-tooled semantics.

In the next section, we formally define the web-
service task-learning problem and ourTask Graph
representation. The definitions and descriptions are
meant to solidify the problem, though we will often
refer to the flight booking services and task in Fig-
ures 1 and 2 for intuitive explanations. After present-
ing a basic learning algorithm for this problem, we
show how to learn in the presence of nested list struc-
tures, missing elements, and selections of elements
from lists. Throughout, we report results on the sam-
ple complexity of our approaches in themistake bound
paradigm [13]. After the theoretical study of the learn-
ing problem, we give a brief overview of the complex-
ity of reasoning with Task Graphs as applied to the
Input-Selectionproblem, where an agent must choose
the correct inputs for each service in a task. Then we
give examples of service descriptions mined by our
algorithm from Amazon Web Services (AWS)1, the
Google Data API, and a task that uses services from
both providers. This final example showcases one of
the more promising benefits of our machine-learning
approach: because our approach does not rely on any
external ontology, there is no need to reconcile incom-
patible or missing semantic descriptions from the two
different providers. Finally, we discuss extensions of
our algorithm and representation for modeling stochas-
ticity, changing services, and a translation to more tra-
ditional planning operators.

2. Terminology and Representation

Intuitively, the learning problem we consider is one
where an agent must complete a sequence of web-
service calls to successfully accomplish a task, such as
using three services to look up a person’s vacation des-
tination, look up the flights to this location, and buy
the cheapest ticket. As examples, Figure 1 shows sev-
eral representations of an individual service call and
Figure 2 shows an example dataflow between multiple
services. Whenever the agent’s model leads to a mis-
take with respect to the task when provided new inputs,
a teachersteps in and shows the correct service be-
havior for that particular instance. This intuitively sim-
ple interaction is formalized in the following sections,
followed by a summary of some of the more vexing
learning issues considered in this paper.

1http://aws.amazon.com/

2.1. Formal Problem Description

We begin by formally defining ourtask graphrep-
resentation. Throughout this section, we refer to Fig-
ures 1 and 2 for examples of the terms defined. Since
web services communicate via XML documents, we
describe the semantics to-be-learned of services start-
ing with XML DTDs describing their inputs and out-
puts2.

To simplify the presentation, throughout this pa-
per we eliminate XML attributes by simply treating
them as child elements. As usual, the declaration of
elements in DTDs can be represented using regu-
lar expressions over an alphabet defined by the sub-
element/tag names. For instance, the expression for
“Res” (to be used in Figure 1) would be (NumRes
Flight+ MaxPrice MinPrice). Though learning general
regular expressions would be intractable, studies have
shown [2] that the expressions representing XML ele-
ment declarations in99% of XML DTDs on the web
are from a restricted language,chain regular expres-
sions(CHAREs), where element names can only re-
peat in a list, and quantifiers, such as+ and∗ are only
applied to flat structures such as symbols or disjunc-
tions of symbols, without any nesting. In this work,
we further assume services do not have disjunctive el-
ements (none of our real world experiments contained
these), leading to the restricted class of non-disjunctive
CHARE defined below.

Definition 1. Non-disjunctive CHARE:

– A non-disjunctive Chain Regular Expression
(non-disjunctive CHARE) is a stringρ of the form
Q1 . . . Qn, where eachQi, 1 ≤ i ≤ n, consists of
a symbolai from alphabetΣ, followed byat most
one "annotation" symbol from the set {+, ∗, ?},
and eachai may only appearonce in ρ. There-
fore,a∗bc+ is a non-disjunctive CHARE, buta∗ba

and(ab)+ are not.
Non-disjunctive CHAREs form a subclass of ex-
tended regular expressions, where neither dis-
junction nor nesting is allowed.

– A non-disjunctive CHARE element dec-
laration is a DTD element declaration
<!ELEMENT A( ρ )>, where ρ is a non-

disjunctive CHARE.

2Note that the inputs to our learning system will be XML docu-
ment instances, from which such DTDs, among others, will need to
be learned.
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City2 Start End

    <NumRes> 2 </NumRes>
    <Flight>
        <Id> 77612 </Id>
        <Price> 500 </Price>
    </Flight>
    <Flight>
        <Id> 64309 </Id>
        <Price> 700 </Price>
    </Flight>
    <MaxPrice> 700 </MaxPrice>

</Result>

<Result>

    <MinPrice> 500 </MinPrice>

Price
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Flight+ [Ref4, Ref5] 500700
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Fig. 1. The output of aFlightLookup web service in XML form (top left), the associated XML structure tree instance (top right) and the full
service instance represented as a graph (corresponding to Definition 9), complete with semantic edges (the dashed edges) representing relations
that should hold between instances corresponding to a pair of nodes. In the bottom graph, objects appear next to their corresponding nodes. When
multiple objects map to the same node, they are grouped either as a list (the horizontal tiling for Flight+) or as a Sublist (the vertical tiling for
Price) based on Definition 4 . For nodes with multiple parts, our implementation hashes all the text (including tags) below the elements so that
we can check for exact equivalence between structures. Thisresults in the “Ref” objects in the figures in the paper, whichare simply shorthand
for these concatenated strings.

– A non-disjunctive CHARE DTDis a DTD where
every element declaration is a non-disjunctive
CHARE element declaration, and the DTD is
non-recursive.

We represent such DTDs by trees in the following
way, by essentially unfolding the element declarations
in context.

Definition 2. Given a non-disjunctive CHARE DTD,
its non-disjunctive CHARE Structure Tree〈N, E〉
(henceforth called an “XML Structure Tree”) is a
node-labelled graph consisting of a set of nodesN ,
each labeled with the name of a DTD element. The
tree is constructed recursively by starting with a node
n0, labelled by the root element of the DTD. For every
nodex with labelA, if the DTD has declaration
<!ELEMENT A (Q_1, ..., Q_k)>

then children nodesy1, . . . , yk are added toN (with
labelsa1, . . . , ak), andx is linked to these child nodes
by edges added toE. Moreover, for eachQj in the
element declaration that has an annotation+, ?, or
∗ , the corresponding nodeyj is annotatedby +, ?,

or ∗ respectively. Formally, an XML Structure Tree
therefore has an associatedannotation partial function
ϕ : N 7→ {+, ?,∗ }.3 Nodes annotated with+ or ∗ will
be calledlist nodes, while nodes annotated with∗ or ?

will be calledoptional nodes.

Ignoring the text outside of the circles, the top right
of Figure 1 represents an example XML Structure
Tree for the non-disjunctive CHARE DTD with
declarations
<!ELEMENT Res (NumRes, Flight+, MaxPrice, MinPrice)>

<!ELEMENT Flight (Id,Price)>

We emphasize that though the above definition starts
from a DTD and builds a tree, in our setting the tree
will be learned from documents – the learning algo-
rithm is not given a DTD.

An XML Structure Graph is obtained from an XML
Structure Tree by also labeling edges as follows:

3When drawing the tree, we leave the annotation as part of the
name inside the circle representing the node, together withthe label.
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City1 City2 Start End

Dest
City
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Name BobGetVacation

Person

Trip

Leave ReturnChicago

New York Chicago

Ref1

Ref2

Home NameNew York Bob

BookFlight
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member
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Fig. 2. A task graph instance for an agent looking up a person’s
vacation information, searching for flights, and booking the cheapest
one. An XML trace provides the structural (solid) edges, butnot the
semantic (dashed) edges, which must be learned. Inputs to services
are shown with bold circles.

Definition 3. Given an XML Structure Tree〈N, E, ϕ〉,
the correspondingXML Structure GraphGstr =

〈N, E′, ϕ, Λstr} has the same set of labeled nodesN

(complete with annotations), but for everyunlabeled
edge(x, y) in E, there are two labelled edges inE′,
with label values from the setΛstr = {part, whole}:
edge(x, y) labelled part, and edge(y, x) with la-
belwhole. These are calledstructural edges, and they
are intended to capture the intuition that in a non-
recursive XML tree, the children are "parts" of the par-
ent "whole".

In diagrams, we continue to show each part/whole
pairing a single solid edge for readability, because of
the regularity of the edge labeling and creation.

We now consider the instantiations (corresponding
to documents) of these structures (which are schematic
descriptions). We continue with the XML Structure
Tree shown in the right upper corner of Figure 1 and
the XML document at the top left of Figure 1. Al-
though there are well-known ways to build trees for
XML documents (e.g., the so-called DOM structure)
these are not useful for us because we want to associate
the values in the document with the nodes of the XML
Structure Tree directly (since we will be trying to learn
this DTD-like model). This is easy for elements whose
tag occurs only once, at a leaf, such as NumRes: we
just put the PCDATA value2 beside the correspond-
ing node in the XML Structure Tree instance. If an el-
ement E is repeated (in the XML Structure Tree this
would be a node annotated with∗ or +), then we can
simply gather the objects hanging from the DOM tree
for it into an associatedlist (e.g. [Ref4, Ref 5] besides
Flight+), where Ref4 and Ref5 are canonical represen-
tations of the DOM trees for the different instantiations
of Flight.4

The problem gets complicated with children of re-
peated internal nodes, such as Id or Price under Flight
node, since there is only one Flight node in the XML
structure graph, yet both the Flight and its children are
repeated. The idea we follow is to superimpose the
successive occurrences of element Flight for all nodes
beneath it until another list is reached (we provide fur-
ther details on this below). This leads to nodes such as
Id having associated so-calledsublists〈77612, 64309〉.
Note that our restrictions on non-disjunctive CHARE
are essential in allowing such structures to be built be-
cause of the reduced variability.

The figures in this paper showing task graphs actu-
ally all showtask graph instancesbecause we feel they
are easier for readers to follow. Here we formally de-
fine “instances” of the structures described so far and,
where necessary, show how the instances are populated
from the original XML documents. We begin by defin-
ing objectswhich are ground instances of the XML el-
ement represented by each node in the XML structure
graph.

4Actually, for nodes with parts, we hash all the text (including
tags) below the corresponding elements so that we can check for ex-
act equivalence between structures. The “Ref” objects in the figures
in the paper are simply shorthand for these concatenated strings.
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Definition 4. An objectis eitheratomic– a grounded
element from an XML document (#PCDATA or a refer-
ence to all the#PCDATA below this element) , or ase-
quenceof objects. Asequenceis either alist of atomic
objects[a1, a2...] if an element repeats multiple times
at a given node in the parse tree of the document, or a
sublistif a “whole” element aboveA repeats – denoted
〈a1, a2...〉). Note that if both cases hold, one can have
a sublist of lists (e.g.〈[a1, a2], [a3, a4, a5], [a6]〉).

In our diagrams for structure instances, we place ob-
jects (e.g.New York) beside the corresponding nodes.
Therefore, as explained above, the Flight+ node in Fig-
ure 1 has a list associated with it (horizontally tiled ob-
jects in the diagram) while the Price node under it is
associated with a sublist (vertically tiled objects in the
diagram) because every flight in the list has an associ-
ated price.

Definition 5. An XML Structure Graph Instanceis a
pair 〈GStr, I〉 whereGStr is an XML Structure Graph
andI: N 7→ O maps each node inGStr to some object
in O.

Given the intuitions from the example above, note
that any node with a+ or ∗ annotation can map viaI
to a sequence of objects, while nodes annotated with
a ∗ or ? may map to an empty sequence of objects.
We emphasize that an XML Structure Graph Instance
is a schema representation coupled with a mapping to
objects obtained from a document, as captured byI.
We now outline the rules to be satisfied byI based
on the schema captured in the non-disjunctive CHARE
TreeT .

1. If noden with labelA in T is a descendant (via
part edges) of a list node, then letnp be the clos-
est such ancestor. Then the ground instances of
elementsA matchingn (by simple parsing) are
put into a “sublist” sequence〈α1, α2...〉 based on
which element in thenp list they are a part of.
I mapsn to this sublist, but eachαi is also pro-
cessed in turn based on the next two rules, as it
may contain several (or no) instances ofA in a
list.

2. If an instance of element nameA corresponding
to nodex in the document is optional and miss-
ing in the document, or if this is the case for any
ancestor ofx in T , an empty object[] is associ-
ated withx (or for the correspondingαi, if the
previous rule was used).

3. If instances of elementA repeat contiguously in
the XML document (the nodex will have annota-
tion + or ∗), these ground instances are put into a
list [α1, α2...]. If the “sublist” rule above already
partitioned the instances ofA, the list is associ-
ated with a singleαi in the sublist, resulting in a
“sublist” of lists.

Examples of missing elements and lists inside sub-
lists appear in the more complicated Figure 3 (Stops∗

is optional and both Stops∗ and Eatery+ have sublists
of lists),

This takes care of modeling the syntax of valid doc-
uments as well as mapping XML documents to ob-
jects and then to XML Structure Graph Instances. But
we are ultimately concerned with modeling semantics
based on mathematical relations, so we now define a
set of relations over objects that we will then use to
model semantics in an extension of the graph structure
constructed above.

Definition 6. A mathematical relationm is a binary
relation between pairs of objects,m : O × O 7→
{true, false}. We useM to refer to a finite set of such
mathematical relations.

This set can be any arbitrary collection of binary
relations and our theoretical analysis provides bounds
based on the cardinality of this set. However, to make
our examples more concrete, we take a cue from
database theory [9] and import five basic functions,
which we turn into binary relations:min, max, sum,
average, andcount, along with anidentity relation to
check equality of objects. This set seems reasonable
since many web services are simply wrappers around
database operations. Since we will be dealing with lists
(and sublists) to model sequences of objects as de-
scribed above, we will also consider the basic list re-
lationsmember5, first, andrest, where the latter two
are used to represent list construction and the identity
relation for both lists and singletons. Throughout the
paper, we will extend this basicM to model increas-
ingly complex tasks, including relations for modeling
selection of objects in Section 4.3 and modeling rela-
tionships between dates in Section 6.1.

We now introduce semantic edges based on these
relations.

Definition 7. A semantic edgeeλm
is a labeled edge

between two nodesn1 and n2 in a graph, with label

5member(L, e) for list L and element e in this work should be
interpreted as “Has-Member” (e.g.member([1,2,3], 1)).
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λm, wherem ∈ M. (Such an edge is intended to mean
that for any objectso1 ando2 instantiating nodesn1

andn2 (i.e. I(n1) = o1 andI(n2) = o2), m(o1, o2)
must hold true.) Asemantic edge instanceis just a se-
mantic edge connecting two instantiated nodesn1 and
n2 (as in Definition 5). A semantic edge instance is
semantically validif and only if m(o1, o2) is true for
I(n1) = o1 andI(n2) = o2.

Semantic edges represent task-specific relationships
such as “the City2 input toFlightLookup in Figure 2
should be filled with a DestCity instance fromGetVa-
cation”. In this example, City2 and DestCity are nodes
(with no annotations),Chicagois an object, and this
particular edge is labeled= becausem is the equal-
ity relation (in our diagrams we omit the equality la-
bel for readability, and use dashed edges to represent
semantic relationship, in contrast to structural (solid)
edges). Unlike structural relations, we cannot assume
these semantic relations are provided to us directly
from the XML structure. However, each XML instance
does give us information about what relations might
consistently hold true. To learn these relations, we as-
sume we have a set of common mathematical relations
(M above), all of arity2, whose semantics are known
and can be easily checked6.

A graph with structural and semantic edges is called
anSS-graph.

Definition 8. AnSS-Graphis a labeled directed graph
GSS = 〈N, E, Λ〉 containing the nodes from an XML
structure graphGstr and has edgesE = Estr

⋃
Esem

whereEstr contains all the edges fromGstr , andEsem

is a set of semantic edges that must hold true in all
instantiations .Λ is {λm|m ∈ M} ∪ {part, whole}.

We can now formally define a service in terms of
its inputs and outputs, though we do not yet allow for
semantic connections between these components.

Definition 9. A services is a triple 〈ηs, GI , GO〉,
whereηs is simply the name of the service, andGI and
GO are each SS-Graphs , whereGI intuitively repre-
sents the inputs andGO represents the outputs.7

6The theoretical efficiency results of this paper generalizeto rela-
tions of constant arity by building the corresponding hypergraph.

7Equivalently, a service can be defined in terms of XML elements
that form its inputs and outputs (Ei andEO) along with a set of re-
lations (Rs) that must hold within their graphs. However, the equiv-
alent graph structure is easier to visualize and has a well defined
construction from data (Definition 2) so we use this representation
here.

An example of a service is theFlightLookup box at
the bottom of Figure 1, which contains a4-node input
graph and7-node output graph. Such a “message gen-
eration” definition of a service follows the descriptions
of services often seen in the Web Service Composition
community [14].

Since there are often semantic relationships between
the inputs and outputs of a service, we define a similar
structure that captures these relationships.

Definition 10. A service transformationis a pair
〈s, Ê〉 wheres is a service, and̂E is a set of seman-
tic edges that link nodes ofGI to GO, thereby form-
ing a larger graphGs. We assume that the service’s
behavior is deterministic given the inputs, and that the
semantic relations encoded in̂E must always hold for
any invocation of services (though other relations can
hold in any single instantiation).

An example of such a structure is theBookFlight
box in Figure 2 where the input graph (a single node)
has a semantic link to the output graph.

The goal of our learning algorithm will be to model
a sequence of service transformations, including rela-
tional links between transformations. This target hy-
pothesis is called aTask, T ∗, and is defined as follows.

Definition 11. A taskis a pair 〈S,R〉 whereS is a se-
quence η1...ηm of service names that induce a partial
ordering�S over the nodes and objects in the corre-
sponding service transformations:x �S y for every
nodex in ηi and every nodey in ηi+1, 1 ≤ i ≤ m. R

is a set of triples〈n1, n2, m〉 for nodesn1 �S n2 and
m ∈ M, and wherem(I(n1), I(n2)) must be true for
all I.

Notice that in a task, semantic relations include not
only those from each service transformation, but also
relations between elements from different services. In-
tuitively, S represents what is called the “control flow”
in process mining [29]– a sequence of service calls
necessary to complete the task (see the top of Fig-
ure 2).R (representing the dataflow) encompasses re-
lations between objects in service graph instancesGi

andGj , whereGi �S Gj , including relations within
(i) the same graph (a service), (ii) relations between
the inputs and outputs of a service (a service transfor-
mation), and (iii) those between graphs associated with
different services (task specific relations).

Internally, we will represent a web-service task us-
ing a task graphas defined below. The edges in the
task graph include all the structural edges from the in-
dividual services, but also include directed edges for
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the semantic relationships between objects. Intuitively,
the semantic edges, including those associated with the
identity relation (shown as unlabeled dashed edges),
maintain a valid hypothesis over semantic relations be-
tween objects, including which outputs link to which
inputs and the semantic relationships between objects
in general.

Definition 12. A Task Graphis an SS-Graph repre-
senting a task. The (potentially annotated) nodes in the
graph are all of the nodes in the SS-Graphs in the ser-
vice transformation sequenceS that is part of a task.
The edges correspond to the union of all the edges in
those graphs as well as inter-service semantic edges
(type iii above) corresponding to the semantic rela-
tionsR in the taskT ∗, as defined above.

Instances of SS-Graphs, service graphs, and task
graphs are all obtained by associating with them an
instantiation functionI coming from the underlying
XML structure graphs. An example of a Task graph
instance is shown in Figure 2.

2.2. Learning A Task Graph

We are concerned with learning task graphs from
tracesof the task (task instances). Traces do not nec-
essarily contain direct information about the semantic
relations; instead they record a sequence of service in-
stances that give clues as to these semantic relations.
For most web services, traces can be obtained as se-
quences of XML documents exchanged by the client
and the service. For REST services (where the service
inputs are encoded as in the URL) the inputs can nor-
mally be converted into aGI with no structural re-
lations using simple parsing rules (splitting variables
based on & and splitting names and values based on
=, as we did in our experiments with Google services).
These traces can be produced by users that are experts
in completing the task (such as a travel agent with a
specific service interface) without any knowledge of
formal notation or the learning algorithm used by the
agent. Users just have to know how to call the ser-
vices (using their normal tools) to complete the task
correctly. The protocol (described more formally be-
low) alternates between the agent attempting to com-
plete the task, and then the human (or some fixed rules)
judging whether or not a mistake has been made, and if
so, providing a trace to help correct the mistake. Thus,
the user is acting as ateacherto demonstrate how the
task is performed. With the help of the above defini-
tions, we can now define the task learning problem,

which will be our main consideration throughout the
rest of this work.

Definition 13. A Task Learning Problemproceeds as
follows. Initially, the learning agent is provided with
the names of the services to be called (S from the task
definition), the set of relations to be consideredM,
and an initial task instance (trace)τ0. Thetask graph
learning problemthen occurs in a series ofepisodes.
At the beginning of each episode, an initial SS-Graph
G0 is provided to the agent. The agent must then for
each successive service inS :

1. Provide the instances of the input elements (a se-
mantically valid SS-GraphGI ). The reasoning
behind thisinput-selection problemonce a model
has been constructed is discussed in Section 5.

2. Make correct predictions about what semantic
relations will hold with respect to the true (but
unknown) TaskT ∗. When possible, this may
involve predicting the actual instantiations of
nodes, as in the input-selection problem above,
but the agent may also make a more generic pre-
diction, simply stating the relationship between
two nodes (e.g. Noden1 will contain the maxi-
mum value from the (not yet instantiated) list in
noden2).

3. Predict the structure of each service instance, in-
cluding annotations. Specifically, the agent must
identify all possible nodesn and structural edges
estruct in the service instance as well as whether
these nodes can be optional, lists, or both. How-
ever, the exact instantiations (the values assigned
to each node) do not have to be predicted, except
for the inputs as specified above.

If during an episode, the agent errs in any of these (as
judged by a teacher)and if the current task instance
refutes the agent’s prediction, this is counted as amis-
take and the agent is provided with the task instance
(traceτt) showing a full run of the episode and all the
instances.

For instance, in Figure 2, the agent is initially given
the “Person” structure at the top. The agent must then
make the correct sequence of service calls, also us-
ing the correct inputs for each service from the previ-
ous outputs and making correct predictions about the
data produced, as outlined above. An agent that has
learned the task graph in Figure 2 can predict that a
FlightLookup will produce a list of at least one Flight
(from the annotation+ on Flight) and that the Max-
Price node will contain the maximum value from the



T.J. Walsh et al. / Learning Web-Service Task Descriptions from Traces 9

Price node. If the agent makes any mistakes (Definition
13) as judged by the human teacher, it receives a trace
(task instanceτ ) as feedback. This feedback can either
be a correct trace for the previous episode (as defined
above and considered throughout this work), but more
generally could be any example that will correct the
misconceptions that led to the mistake (for example a
stored trace from a similar instance).

We consider the efficiency of task learning in the
Mistake Boundparadigm [13].

Definition 14. Efficient Task Learningoccurs if the
number of mistakes (as defined at the end of Def-
inition 13) it makes over its lifetime is bounded
by a polynomial function of the input parameters
{|GI |, |GO|, |S|, |M|}, where |S| is the length of
the sequence of services to be called and|GI | =
maxj |GIj | for j = 1 . . . |S|, and similarly for|GO|,
and with|G| being the number of nodes in graph|G|.

In practical terms, this constraint ensures we can
train agents to perform complex tasks involving web
services with a number of examples that scales poly-
nomially with the size of the task schematic. This ef-
ficiency is crucial for any practical realization of this
system as traces of specific tasks, while not necessarily
scarce, certainly will be limited. Also, we note that the
theoretical bounds we prove here will rarely be met in
practice as they are done in a worst-case analysis. Our
experimental results (Section 6) indicate the number
of mistakes for large-scale tasks will actually be quite
small.

Finally, we note that other frameworks could also be
used to bound the sample complexity of similar tasks,
but we chose mistake bound because it can be used
in the deterministic online case, where it only counts
the number of mistakes made (and therefore traces
needed) and does not demand that these mistakes are
all made during any particular phase of learning. This
is the most natural framework for “over the shoulder”
teaching framework, where a teacher needs only to
step in at times when the learning agent actually makes
an error. Also, recent work on the sample complexity
in apprenticeship learning (a protocol very similar to
ours) [28] has shown that mistake-bound learnability
of a class is sufficient for its efficient learnability in the
apprenticeship setting.

2.3. Key Learning Problems

While the presence of traces certainly makes the
web-service task learning problem easier than a com-

pletely unsupervised approach, a number of non-trivial
learning tasks remain. Here, we provide a sketch of the
key challenges in the web-service task-learning prob-
lem.

– Ambiguity - A single (or even multiple) traces may
not settle all the semantic relations between objects.
For instance, if two lists are visible to a service
(A=[1,2,3] and B=[3,4,5,6] and the service produces
“3”: was that max(A), min(B), or length(A)? Further
traces are required to determine the correct pairing
(if there is one).

– List Structures - Lists of objects are ubiquitous
in web services. Figures 1 and 2 show such output
with the list of possible flights. Detecting and mod-
eling lists, including learning when lists are poten-
tially empty, is an important portion of the overall
task-learning problem. While WSDL documents or
other syntactic schemas often indicate which ele-
ments may repeat, we show in this paper that under
very common assumptions, the presence of lists and
missing elements can be learned as well. This makes
our learning algorithm more practically robust.

– Sublists and Selection- When lists contain non-
primitive structures, the parts of the elements in the
list (e.g., the Price of a Flight from the flight list in
Figure 1), form asublistas covered in Definition 4.
The elements of a sublist are not grouped together
in the original XML document, but, we may need
to consider them as a group to learn some semantic
links. Additionally, the dataflow from some nodes
may best be expressed in terms of the grouping in-
duced by a “whole”. For instance, in Figure 3, when
a Flight is chosen, its “Stops” list is copied over, so
the dataflow should capture the fact that these stops
all belong to the same flight, and if possible, the rea-
son for this selection.

3. Simple Task Learning

Before we handle the general form of the learn-
ing problem presented in Definition 13 , we consider
a simplified web-service task-learning problem with
a number of assumptions. We assume lists (e.g., the
Flight list in Figure 1) are not nested inside one another
and can never have length 0 (no missing elements). We
further assume that any time multiple parts of an object
that came from a list appearing in a later SS-Graph,
the entire structure (not just a few parts) will appear
in the later graph. For example, the entire Flight ob-
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ject appears in the output graph ofBookFlight, not just
the Price and Id. In subsequent sections, we will relax
all of these conditions, but we study this “simple task-
learning problem” to convey the basics of our learning
algorithm.

3.1. Mapping XML to Structure Graphs

Each input (traceτ ) to our learning algorithm comes
as a series of XML documents showing the inputs and
outputs of each service instance. If the syntax of each
service (what elements are lists and which ones are
optional) is provided through correct WSDL or other
documentation, translating these instance documents
to XML Structure Graph instances can be done us-
ing the procedure outlined in Definitions 2, 3, and 4.
However, we consider here the more general situa-
tion where this documentation is not provided, and
hence the translation from XML documents to a task
graph instance requires learning the syntax of each ser-
vice’s inputs and outputs (XML structure subgraphs
of GI and GO). As noted earlier, this syntax (the
XML-structure tree) can be represented using a non-
disjunctive CHARE (Definition 1) for each XML el-
ement. For instance, the expression for “Res” in Fig-
ure 1 would be: (NumFlights, Flight+, MaxPrice, Min-
Price). With only the traces to work from, these forms
must be learned from multiple traces because each
trace instance may only provide partial information
about whether an element is a list (singletons and lists
of length 1 are often indistinguishable) or optional
(covered later).

Because of the non-disjunctive CHARE constraints,
when we see two “Flight” elements under a “Res” ele-
ment, we can infer it is a list (Flight+ or Flight∗), not
a sequence of two Flights, since no duplicate element
names can appear in a declaration. Therefore translat-
ing XML documents to instantiated graph nodes and
structural edges in an XML Structure Tree, which
forms the backbone of a Task GraphGT , is straight-
forward, even in the online-learning case. Each doc-
ument maps to a specific service〈GI , GO〉 by the
rules in our earlier definitions. That is, each XML ele-
ment can be represented by a non-disjunctive CHARE
(where repeated elements will have a+) and each sym-
bol in the non-disjunctive CHARE becomes a node
in the graph. If there is a+ on this symbol and the
node in the graph does not yet reflect it, the annota-
tion is added (other quantifiers are considered in the
next section). Part-Whole relations and instances are
then copied in from the XML. The instances of each

node are populated from all the corresponding XML
elements. Thus, under the assumptions above, learn-
ing the XML-structure trees within the true Task Graph
G∗

T is tractable. The efficiency is discussed in the
next section and modifications to the structure learning
when these assumptions are relaxed are discussed in
Sections 4.1 and 4.2. But now we turn our attention to
the goal of learning the semantic relations.

3.2. Learning Simple Task Graphs

Our goal is to construct a model of the syntactic
and semantic relation in the true taskT ∗ with at most
a polynomial number of mistakes. The Task Graph
Learning Algorithm (TGLA: Algorithm1) does so us-
ing the Task Graph (GT ) representation by ruling out
possible semantic relations between elements based on
traces.

Since we are temporarily assuming each XML ele-
ment appears at least once, the first trace bootstraps all
the nodes in the task graph, though+ annotations may
still need to be refined, and there are potentially incor-
rect semantic links. For instance, if the first trace in our
flight-booking domain had a person whose name and
home city were both “Austin”, then both the “Home”
and “Name” nodes in the graph would link (through
the identity relation) to the “Name” node inGetVaca-
tion. This will be problematic if the next episode starts
with Bob from New York. Should the agent callGet-
Vacation with “Bob” or “New York”? In the mistake-
bound setting we have considered, when such ambigu-
ity exists the agent can just pick one of the possible
choices. If it is wrong, it will receive a trace and be
able the eliminate the incorrect link. Even with more
complicated semantics that require super-polynomial
computation to make predictions (see our overview of
reasoning with several different variant ofM in Sec-
tion 5), it only takes one trace with contrary informa-
tion to remove a link. Therefore, the mistake bound is
on the order of the number of edges that might need
to be eliminated fromGT . More formally (a proof is
provided in Appendix A):

Proposition 1. TGLA for Simple Tasks makes
O(((|GO | + |GI |)|S|)

2|M|) mistakes in the simple
web-service task-learning problem when the target se-
mantics are representable.

Again, the polynomial sample complexity bound
shows that the amount of data needed in the worst case
for learning a task graph scales only quadratically with
the size of the task in the online mistake-bound set-
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Algorithm 1 Task Graph Learning Algorithm (TGLA)
for Simple Tasks

1: Input : M, initial traceτ0, service sequenceS
2: Output : Behavior eventually consistent with task

T ∗

3: ConstructS and�S exactly fromτ0

4: Extract structure graphsGI andG0 for every ser-
vice in τ0 as defined in Definition 3.

5: GT =
⋃|S|

j=1 GIj ∪GOj //All the nodes and edges
of all the structure graphs

6: for Every pair of nodes(ni, nj) ∈ GT where
ni �S nj and everym ∈ M do

7: if m(ni, nj) holds for the instances of those
nodes fromτ0 then

8: Construct the corresponding edge
〈ni, nj, λm〉

9: end if
10: end for
11: for each episodedo
12: //Main Learning loop
13: The agent receives an initial set of instances

GO0

14: Execute each service inS , choosing inputs and
making predictions by generating instances that
are consistent with the semantic links inGT

15: if Traceτ received from the teacher (indicating
a mistake has been made)then

16: for each semantic edgee = 〈n1, n2, λm〉 ∈
GT do

17: Let Iτ map nodes inGT to their corre-
sponding objects inτ

18: if m(Iτ (n1), Iτ (n2)) is false (invalid)
then

19: Removee from GT .
20: end if
21: end for
22: for each semantic noden ∈ GT do
23: if Iτ (n) is a list of objects (see definitions

2 and 4)then
24: Annotaten with a +.
25: end if
26: end for
27: end if
28: end for

ting. Such results are important in machine learning as
they indicate the tractability of algorithms as their in-
stantiations become larger. Similar bounds are possi-
ble (under different assumptions) in other frameworks
such as PAC [24] for the batch setting with a distribu-

tional assumption on the types of services. Finally, we
note our experiments will show that the actual number
of mistakes needed to learn many real-world services
is actually quite small.

4. Full Task Learning

We now relax the earlier restrictions, allowing
nested lists, missing elements, and selection semantics.
Each change, leads to increased sample and compu-
tational complexity for TGLA, though the respective
bounds for all of these extensions remain polynomial.
To demonstrate these properties, we introduce a sec-
ond “Flight Booking” example in Figure 3. This exam-
ple contains several features that were formerly pro-
hibited, including nested lists, optional elements, and
portions of complex structures “selected” from earlier
services. The complexity of learning such Task Graphs
is considered in the following subsections.

4.1. Nested Lists

Allowing nested lists (as with “Stop∗” and
“Eatery+” in Figure 3, where each entry in a list of
stops has its own list of eateries) requires a change
in the entries ofM. As a matter of notation, we de-
note the maximum nesting depth, (which is3 in Fig-
ure 3, but at mostmax (|GO|, |GI |)), asd in subse-
quent bounds. Onced > 1, it is possible for sub-
lists to also contain lists (as with the “Eatery+” node).
Hence, the semantic links may become ambiguous
(does “member” mean the node contains a single list
from the sublist, or is it a sublist of members from each
list?). This is rectified by creating2 versions of each
relationm ∈ M: list-m andsublist-m.

We use these different forms of the relations (as de-
fined below) to resolve the ambiguity discussed above,
though we note that other changes toM are possible
to achieve the same desired effect. Specifically, we can
interpretlist-m(Iτ (n1), Iτ (n2)) from line 18 of Algo-
rithm 1 using the following semantics (withI as short-
hand forIτ ):

– If I(n1) is a list instance, andm(I(n1), I(n2)) is
true, then the edge is valid.

– If I(n1) is a list instance andI(n2) is a sublist
of objects〈o1...on〉 then if∀im(I(n1), oi) is true,
then the edge is valid. This is to indicate, for in-
stance, that all the single objects inn2 (which are
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City1 City2

22187
09765

23998

Flight+

DET

MIN
STL
PHI

[]

member
Selection

[Flight+,min,numStops]
[Flight+, T]

12/1/08

Id

FlightLookup2

Stops*

StopId

[Ref1, Ref2, Ref3]

Boston

Date

Housston

[]
[Ref4, Ref5]
[Ref6, Ref7]

Small
Flight

Stops* []
Id

StopId

count
list−

[Anne’s]
[Joe’s, Bob’s]

[KWIK−Food, Joe’s]
[Bluto’s, Wimpy’s]

BookFlight2

Id

Ref4

23998

Eatery+

Eatery+

member

member
Selection

Num
Stops2

2
0

[]

23998

SameSelection
      [Flight+]

[Flight+,min,numStops]
[Flight+,T]
[Stops*,T]

member
member

Fig. 3. A partially learned task instance. Only some Selection edges
are shown (for clarity). SameSelection links can exist between all
the parts of SmallFlight. Further learning (on instances with no 0 or
1 stop flights) could eliminate the extra Selection label ([1,T]) shown
for Eatery+.

only grouped because of shared parent structure
in the XML) are members of a list fromn1

8.
– If I(n1) is a sublist of listsl1...ln (as in the

“Stops∗” node in Figure 3),n2 must be instanti-
ated with a corresponding sublist where for each
object〈o1...on〉 , m(li, oi) is true for the edge to
be valid. This produces a “mapped” version ofm

as with the “list-count” edge connected to Stops∗

in Figure 3.

If none of those cases hold, the edge is not valid.
sublist-m has the same behavior in the first two cases
above (but with sublists inn1 instead of lists), but in
the third case, whenn1 contains a sublistsl of lists
as in the “Stops∗” node in Figure 3,n2 must contain
an objecto such thatm(sl, o) is true. For instance,
“sublist-count” applied to the Stops∗ node in Figure 3
would link to a node containing “3”, the number of
lists in the sublist. As a second example from the more
familiar Figure 2, list-count on the Price node would
only match another node with up of the sublist [1,1]
(price looks like it has two lists, each of length 1),

8Similar relations can be considered whenn2 contains a list, but
in our studies the relation mentioned here seems to occur more fre-
quently

while sublist-count will only match Price to a node
containing the single instance2 (the length of the sub-
list). This is important for being able to maintain the
list of valid relations since lists of size1 and single-
tons are essentially indistinguishable in the XML doc-
uments. For simplicity, where ambiguity does not exist
in our examples, we omit this distinction. This exten-
sion only increases|M| by a factor of3 and therefore
does not affect the bound stated earlier. However, the
presence of nested lists gives rise to several difficulties
regarding missing elements and instance selection. We
now consider these problems in detail.

4.2. Learning with Missing Elements

Sometimes, the results from services can have miss-
ing elements. For instance, the non-stop flight in Fig-
ure 3 has an empty Stop list (and corresponding sub-
lists). This structure is captured in XML Structure tree
nodes using the∗ annotation for potentially empty lists
and the? annotation for potentially missing single-
tons. We now add these quantifiers to the possible an-
notations of the nodes in the task graphGT the same
way we utilized the+ annotation on the Flight node
in Figure 1. As with+, it is possible that WSDL or
other documentation provides this information before
the task-learning problem begins, in which case no
learning about these syntactic forms needs to be done.
But we consider here the worst case situation where
all we have is traces. In that full learning setting, these
new annotations are adjusted in the following ways
by TGLA given a trace (these conditions would be
checked in the block of Algorithm 1 between lines 22
and 26, with the added condition that the loop at line
22 must now consider nodes that have been added by
the new trace.

– If a noden ∈ GT has no annotation or+ annotation,
but an instanceIτ (n) does not appear in the current
trace, change the annotation to? or ∗, respectively.

– If the traceτ contains a new noden that is not in
GT , create the new node with annotation? or ∗, de-
pending on whetherIτ (n)is a list or not.

– If a noden has no annotation or is annotated with?
andIτ (n) is a list, change the annotation to+ or ∗,
respectively.

Note that once a node has been determined to be
optional or a list (or both), its annotation never goes
back. We also need to deal with the semantic edges
for these nodes, which might exist between optional
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nodes and required nodes (the “list-count” connection
between NumStops and Stop). However, if the optional
node has never been seen, we cannot test this rela-
tion. But based on Definition 13, the failure to predict
a relation to an element that has never been seen is
not a mistake (because it is not refuted by the current
instance). We now make the following adaptations to
SimpleTaskLearn:

– When an optional node first appears in a trace, add
in all edges to and from this node not refuted by
current instances. This is the same initialization that
formerly happened only withτ0.

– When edge semantics are tested, we still test ev-
ery edge, even if one end contains no instances. The
underlying semantics ofmλ determine the validity
(count([], 0) can be true, but max([], 7) will come
back false).

Although nodes and edges may now be initialized
in episodes other than the first, the number of potential
edges in the task graph as a whole is stillO(|S|(|GI |+
|GO|)2), so the resulting mistake bound for TGLA is
on the same order as before (extra mistakes are made
in adjusting the annotations of nodes but this quantity
is dominated by the edge adjustments).

4.3. Selection Relations

We now relax assumption from Section 3 , which re-
quired that any time more than one part of a “whole”
structure in the task graph repeated later in the task, the
entire structure reappears. This assumption does not
generally hold for common web service tasks. For in-
stance, when buying a product on Amazon, after find-
ing an offer, the buyer may need to enter the product
and seller ids in a form, but should not have to copy
in the manufacturer name, country of origin, or all the
other non-essential properties of the product in this
purchasing form. To model such “selection” of parts
of a compound object, we introduce a new set of la-
bels for semantic edges based on templates defined be-
low, but first we cover a more concrete example of this
situation.

In Figure 2, one of the flights from the Flight+ list
in FlightLookup appears exactly copied in theBook-
Flight output. Because of this, semantic links emanate
from the parts of the Flight+ nodeand the Flight+

node itself (note the “member” link between Flight+

and Flight). From these links, a reasoner could deter-
mine that the minimum priced flight should be cho-

sen and that Id should be fed as input toBookFlight.
However, in general (and as we have seen in our Ama-
zon.com and Google experiments), web services do
not repeat the same exact structure between services.
More commonly, a few elements of the larger struc-
ture appear after a member is selected from a list, as
seen in Figure 3, where the “NumStops” node is omit-
ted in theBookFlight2 output. This omission prevents
not only reasoning about how this flight was selected,
but also modeling the connection between all the parts
in the output ofBookFlight2. They are not just a ran-
dom collection of the members of sublists fromFlight-
Lookup2, they have a semantic connection based on a
shared “whole” instance. These are stops for a single
(and specific) flight. For instance, if the third flight is
chosen, then theBookFlight2 output should certainly
not have a StopId ofSTL, but just having the “member”
link does not assert this relation.

To address this issue, we introducederivedseman-
tic relations based on two templates defined below. La-
beled edges with these semantics will give us a way
of predicting user preferences in selection as well as
maintaining groupings of instances based on shared
ancestry in the XML document. Our experiments with
tasks comprised of services from Amazon and Google
(see Section 6) indicate modeling such groupings are
crucial for capturing the true semantics of tasks. Such
preferences could be arbitrarily complex, so we focus
here on a restricted subset of queries conforming to
simple XPath (http://www.w3.org/TR/xpath) expres-
sions of the form node[simplePredicate]/node/node/...
. We do so as a proof of concept, to show how the sam-
ple complexity changes with these expanded seman-
tics. Learning about more complex preferences is be-
yond the scope of this work.

The Selection[nanc, m
′, npref ](n1, n2) template

encodes a set of binary relations between two nodes
n1 andn2, (like the two Eatery+ nodes in Figure 3)
wheren2 contains a subset ofn1’s instances, and those
instances were all parts of a larger “whole” structure
aboven1 (e.g., eatery lists for all the stops on the same
flight). Each relation instantiates the following:

– nanc the “ancestor” ofn1 where the “whole” in-
stance was chosen. (fromn1 = Eatery+ that’s either
Stop∗, or Flight+.)

– m′, a semantic relation comparing two objects. For
our purposes we assume thatm′ ∈ M′

⋃
⊤, where

M′ ⊆ M and⊤ is a wild-card relation explained
below.
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– npref is a child node in the same service graph (GI

or GO) asn1 and is reachable fromnanc by “part”
edges without traversing another list node.

In Algorithm 1, each potential match for these nodes
would have to be considered for the initial traceτ0

(line 7) and all instantiations of these parameters in a
Selectionedge inGT would have to be considered in
the loop over current edges (line 16). Intuitively,Se-
lection edges say thatI(n2) contains a subset of the
instances inI(n1) all of which descend from a single
instance ofnanc, picked over others in that node be-
cause the corresponding instance atnpref = m′(npref)
(select an element ofI(n1) based on the valuenpref,
tied ton1 throughnanc). For instance, the Eateries in
the BookFlight2 service (n2) are a subset of those in
the Eatery+ node forFlightLookup2 (n1), and were
chosen from a flight (nanc) based on min (m′) Num-
Stops (npref).

In our examples, we considerM′ = {min, max}.
Because these functions will not be able to model all
preferences, the wild-card⊤ is used to indicate that
someselection of an instance from a node is being
done, but we cannot qualify it with the relations inM′.
This may introduce a number of redundantSelection
relations (as can be seen withFlight+ in Figure 3), but
since all relations between nodes need to be valid when
executing the tasks, these more general links not harm-
ful. Overall, the number of possible instantiations of
this template isO(|M′||S|d max (|GO|, |GI |)).

If two nodes in the same service graph (like Id
and Eatery+ in BookFlight2) have Selection links
with m′ 6= ⊤, then their shared ancestry is eas-
ily checked fromnanc and npref. But, if m′ = ⊤,
one can’t tell simply from the Selection links if, for
instance, Id and StopId are chosen from thesame
flight instance. To combat this, we introduce a se-
mantic relation that encodes such shared ancestry:
SameSelection[nanc](n1, n2). We only consider this
relation between nodesn1 andn2 in the same service
graph (GI or GO) where both have Selection links ref-
erencing the same nodenanc. Considering both tem-
plates, we have expandedΛ from its original(|M|+2)
to O(|M| + |M′||S|d max (|GO|, |GI |)), leading to
the following result.

Proposition 2. Modifying TGLA (Algorithm 1)
with the extended semantics described above makes
O(((|GO | + |GI |)|S|)

2(|M||S|d max (|GO|, |GI |))
mistakes in the web-service task learning problem
when the target semantics are representable with a
Task Graph.

Proof. 9 The full task graph hasO((|GO | +
|GI |) ∗ |S|)2 nodes. Selection and SameSelec-
tion introduce O(M′|S|d max (|GO|, |GI |)) +
O(|S|max (|GI |, |GO|)) =
O(M|S|d max (|GO|, |GI |)) edge labels. Each of
these edges can be checked by simply grouping the
instances as per the edge parameters (a polynomial
time operation). Thus, the edges can be introduced as
each node appears and checked for validity against
each trace just as before. Finally, we recall that
d = O(max (|GI |, |GO|)), so the sample complexity
is polynomial in the parameters of the task-learning
problem.

5. Reasoning with Task Graphs: Choosing Service
Inputs

While the bulk of this paper concerns the problem
of learning a Task Graph model from traces of users
performing a task, we now analyze the problem where
the agent has such a model and must select the correct
inputs for each service based on the objects already
encountered in the task. Note this problem of choos-
ing the inputs for each service in the task is also a re-
quirement of the online learning problem defined ear-
lier (Definition 13), but here we turn our attention to
the complexity of this reasoning process itselfgivena
Task Graph.

We begin by formally defining theInput-Selection
problem. The Input-Selectionproblem involves an
agent performing a known taskT = 〈S,R〉 comprised
of services S= [s1...sm] (see Definitions 11 and 9).
Using the true Task GraphGT = {N, E, ΛM} and an
initial SS-Graph Instance (e.g. the “Person” structure
and objects in Figure 2), the agent must for each ser-
vice si, provide an SS-Graph Instance that is a valid
instance ofGIi, the input graph forsi. Validity refers
here not only to the structural and semantic edges
within GIi, but since this is a subgraph in the larger
GT , the objects in the instance ofGIi must be valid
for some instantiation ofGT , given that the objects
for nodes corresponding to prior services (sj ≺ si)
are already set. For instance, when picking an input
to the BookFlight service in Figure 2, the one-node
GI does not encode any constraints, but the largerGT

(even though part of it would not yet be instantiated)

9The full proof of this Proposition is similar in form to that of
Proposition 1, so here we simply outline the differences between the
two
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encodes that this input must be a member of the pre-
vious service’s “id” list, and must correspond to the id
of the lowest cost flight. Note that the latter reasoning
requires lookingforward to a portion ofGT that will
not be instantiated until after this service call, but nev-
ertheless encodes important constraints.

The service is then called with the objects in that in-
stance. After each service call, the agent receives the
output of the service (GOi), and can therefore instan-
tiate that part ofGT (bind objects to nodes), so intu-
itively the problem is one of deciding the inputs to each
service in a task, given a partially instantiated task-
graph.

We note that this is not a learning task, so the worst-
case bounds will be in terms of computation time,
not sample complexity. The complexity of the input-
selection problem is highly dependent on the mathe-
matical relationsM behind the set of edge labels in
the given task graph. Below, we show how two differ-
entM’s can change the input selection problem from
trivial to intractable.

We begin with the simplest semantics, whereM =
{=}, that is only equality relations between objects are
considered. This corresponds to a task graph where all
the semantic edges enforce equality between the in-
stances corresponding to each node. This leads to the
following simple result:

Remark 1. WithM = {=}, the input-selection prob-
lem for a given servicesi with corresponding input
graphGIi comprised ofn nodes with maximum degree
δ can be solved inO(nδ) time.

The result is straightforward– for every nodenj in
GIi, one can simply check every semantic edge and
see if the connected node inGT is instantiated and
copy this value intonj . If the connected node is not in-
stantiated, then another link is checked. If no links lead
to instantiated nodes, then an arbitrary object can be
used because there are no constraints on previous ser-
vices. Following longer paths of equality links is not
necessary because of the transitivity of equality– any
longer paths that lead to an instantiated nodenk means
there will also be an edge betweennj andnk because
of our “maximal task graph” assumption10.

However, as we have seen, task semantics usually
require far stronger relations than equality, so we now

10In this case this assumption can actually be relaxed because
even with a minimum number of equality edges the maximal
graph can be reconstructed in (amortized) constant time using a
unification-style algorithm.

consider a more expressive set of relations,M =
{member, sum, min, count, =} where membercan
be used to mean that each element of a sublist is a
member of a different list or sublist (see the explana-
tion of the semantics in Section 4.1).

Remark 2. The input-selection problem withM =
{member, sum, min, count, =} in is NP-Hard.

Proof. The reduction is from the well-known (and NP-
Complete) Knapsack problem, where, given a number
of items, each with a valuevi and costwi, one must
determine if there is a collection of these items with
value greater than or equal toV ∗ that does not exceed
a total costW ∗. A task graph that encodes this ex-
act problem (and could be constructed from an arbi-
trary instance of the knapsack problem) is shown in
Figure 4. The member links from the instantiated out-
put nodes to the input of the service encode the selec-
tion of items while the min, count, and sum relations
in the output of the Knapsack service encode the value
and cost constraints. The chosen items are stored in a
sublist to facilitate the mapping of the member rela-
tion (each element in the sublist must be a member of
the original list). The CostComp and ValComp nodes
end up each containing lists of length two for compar-
ing the packed weight and max weight and the packed
value and minimum value (thus the member links be-
tween these comparison nodes and their elements as
well as the min restrictions). A slightly simpler reduc-
tion is possible by introducing aGreaterThanrelation
and eliminating these comparison nodes.

An exhaustive study of the complexity of inference
in relevant classes ofM is beyond the scope of this
work, which is instead focussed on the sample com-
plexity of learning. We provide the preceding results
only to give examples in the general landscape and
show that the inference required to use a learned task
graph to perform a task may require super-polynomial
computation, depending on the complexity of the se-
mantics. While exact solutions to these problems are
intractable, people using web services will often find
approximate solutions meeting their constraints, in-
cluding solutions that leverage meta-data or other hints
that our system currently ignores.

6. Examples with Real Services

We now discuss several experiments where TGLA
was applied to tasks comprised of publicly available
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Fig. 4. A task graph encoding the knapsack problem. The CostComp and ValComp nodes end up each containing lists of length two for comparing
the packed weight and max weight and the packed value and minimum value. Other constructions are possible using relations like GreaterThan,
but here we show that even with the simple relations used in our experiments and examples, input-selection can be intractable.

web services based on traces collected by the authors.
We begin with tasks where the services are all from
the same provider. We then discuss a task where ser-
vices from Google and Amazon are combined and
show the system is able to learn its own homogeneous
task graph despite the heterogeneous origins of the
services. Summary results from the experiments, in-
cluding the maximum number of traces needed, are
reported in Table 6. The accompanying graph charts
the number of services where mistakes occurred for
seven episodes in the two most complex tasks we stud-
ied, averaged over100 random orderings of the col-
lected traces. While the total number of trace requests
was generally the same in these runs, the quick de-
scent of the curves indicates many instances of both
tasks and many service calls within these instances
can be completed correctly before all the nuances are
learned. The full collection of traces are available at
(www.research.rutgers.edu/∼thomaswa/traces.tar.gz).

6.1. Examples with Single Providers

Amazon.com offers an extensive web-service li-
brary (http://aws.amazon.com/aws), providing access
to its inventory, customer wish-lists, and shopping
carts. These services have been studied in the Web Ser-

vice Composition (planning) community, where plans
involving multiple Amazon services were dynamically
constructed [15]. However, this automation relied on
hand-crafted descriptions of each service. With an eye
towards using our learned descriptions instead, we now
present some results in the AWS testbed.

In the “AlbumBuy” experiment, an agent was given
an artist and album title (tagged as “In1” and “In2”,
respectively) as well as a search index (“music”) and a
quantity to buy. The agent then had to find the corre-
sponding ASIN (Item Id) and use it to create a shop-
ping cart with the required number of copies of that
item in it. The first trace provided to our agent in-
volved a self-titled album (Title=“Warren Zevon”, Al-
bum=“Warren Zevon”). This ambiguity resulted in the
agent linking both In1 and In2 to both the “Title”
and “Artist” inputs of ItemSearch. In the next episode
(In1=“Beatles”, In2=“Abbey Road”), the agent chose
to send these parameters to ItemSearch backwards
(e.g., “Beatles” to Album), garnering no results. The
agent then received a trace and deduced the correct
identity links. Other semantic relations mined in this
task included (1) When ItemSearch returned multiple
items (it matches substrings on titles), the one with
the title matching In2 (and Title) should be added
to the cart and (2) the quantity passed to CreateCart
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Fig. 5.GT for the Amazon AlbumBuy task. Some relations are suppressedfor readability.

should be linked to the requested quantity in the ini-
tial information– a non-trivial relationship since most
of the traces requested only one album copy and many
lists returned had a length of1. 11 The former behavior
was learned with the help ofSameSelectionrelations,
which linked the Title and ASIN of the item put in the
cart. Since the Title was also linked back to the origi-
nal input, the agent could infer which of the returned
items to actually buy (by choosing the ASIN grouped
with the matching title). Note that these behaviors are
exactly right and the task would not be correctly exe-
cuted without this knowledge. The fullGT for this task
is illustrated in Figure 5.

We also experimented with tasks where agents
learned about services for looking through wish-lists,
searching for items (sometimes from earlier wish list
searches), creating carts, and adding more items to
a cart. Often the agents inferred rules for choosing
items, such as buying minimum price items. Since ex-
act structures are rarely copied, these rules were repre-
sented with theSelectionandSameSelectionrelations.
The mined graphs usually contain dozens of nodes,

11In other tasks, such links can be helpful. For instance, we ran
another experiment where the quantity was not specified but traces
showed it to always be one and the agent correctly learned this in-
formation was based on the “Count” of the ASINs passed to Create-
Cart.

and typically fewer than5 traces are needed before the
learner can correctly execute tasks on arbitrary inputs.

In addition to the Amazon experiments,
we also trained the system on tasks in-
volving services from the Google Data API
(http://code.google.com/apis/gdata/). Services in this
library allow users programmatic access and editing
capabilities to their email, contacts, spreadsheets,
calendars, and other content. In this setting, we con-
structed a task for users filling out a form to receive
reimbursements for travel on a per diem basis. Specifi-
cally, the traces tracked users looking up a conference,
stored either as a (potentially multi-day) appointment
or a series of appointments, in their Google Calendar.
When multiple appointments were used to encode
a multi-day trip, the system identified the min/max
dates (selected from a sublist) as the beginning/end of
the conference. The “where” field for the appointment
was then used to look up the per diem information
from a Google Spreadsheet fashioned from a real US
government per diem spreadsheet, and then a form
was updated with the traveler’s name, dates, and per
diem information. This task involved several intricate
relationships that needed to be learned. For instance,
some of the per diem rates were listed seasonally
(e.g. searching for the rate in Las Vegas returns a
list of rates and dates, so the system had to pick the
correct rate corresponding to the trip dates). With
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Max
Experiment Nodes Services Traces

Needed
Flight Booking 25 4 3

Amazon Album Buy 56 3 3
Google Per-Diem 147 4 5

Birthday Gift 231 6 7

Fig. 6. Left: Sample results for learning task graphs from several examples discussed in this paper.Right: Number of services where mistakes
were made (averaged over100 orderings of task instances). A trace is not necessarily given after each episode, only when the learning agent
makes a mistake, hence the5 traces needed for Google Per-Diem are spread across7 episodes.

our selection templates and addingDateBeforeand
DateAfter relations toM, we were able to capture
this behavior. Table 6 reports the maximum number of
traces needed in our experiments and the number of
nodes in the graph. The accompanying graph charts
the number of services where prediction mistakes
were made per episode, averaged over100 orderings
of the task instances. Note many of the task instances
can be executed without error even before all the
nuances of the task are learned, and often only one
additional trace is needed after the third episode.

We also trained the system on similar tasks where
different information had to be entered in the fi-
nal form. For instance, we experimented using traces
where appointments were only encoded using multi-
ple single-day appointments (rather than the mixed ap-
proach above) and the length of the trip had to be en-
tered in the final form, which the system correctly de-
termined to be the count of the number of calendar en-
tries. These examples demonstrate the flexibility of our
approach— by learning task-dependent semantics of
the services, it can adapt to slightly different uses of
the services.

6.2. Services with Different Providers

One of the goals of the service-oriented computing
movement is to compose tasks with service calls from
different providers. Unfortunately, non-uniformity in
web-service descriptions has made this goal quite
difficult from a semantic perspective. While there
has been work on learning unified service descrip-
tions from heterogeneous providers in the ontology
matching [12], semantic annotation [5], and even the
machine-learning [10] communities, ontology match-

ing requires semantic service descriptions (which are
often not available, for instance Google and Amazon
do not provide these), and the annotation techniques
require an existing domain ontology (uncommon) and
often try to mine universal descriptions from meta-data
(web forms, WSDL files, etc.), rather than instances.
In contrast, we have taken a more traditional machine-
learning approach: because we are learning our own
semantics based on traces, there is no need to reconcile
mismatched or even missing descriptions.

To illustrate this point, we performed an experiment
using services from both Google and Amazon. The
task involved using the Google Calendar service to
find all the birthdays of a user’s colleagues within a
given date range, then using the Google Contacts ser-
vice to look up the email address of the person with the
earliest birthday. This email address was then sent to
the Amazon ListSearch service to find the user’s Wish
List. Then, the Amazon ItemLookup and CartCreate
services were used to purchase the cheapest item on
that list. Multiple traces were needed to learn certain
finer points of this behavior, such as picking the ear-
liest birthday, buying the cheapest gift, and eliminat-
ing erroneous date relations (such as relations based
on publication dates). The system’s success in infer-
ring the semantic links in the task, even between mul-
tiple providers, shows that heterogeneity is not as vex-
ing when learning from data, rather than analyzing
sparse and potentially scarce description files. Also,
because the Google Contacts service does not yet sup-
port full text indexing (instead returning a list of con-
tacts), the selection templates were necessary for learn-
ing the correct behavior. Table 6 and the accompanying
graph illustrate the number of services where mistakes
are made on each episode. Notice that this task is more
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complex than the earlierPer-diemtask, but only takes
a few more traces to learn, with half the services usu-
ally learned sufficiently for the experimental task in-
stances after3 traces. Also, many runs required fewer
than the maximum (7) number of traces as more infor-
mative traces were encountered earlier. Given the com-
plexity of the task, the small number of traces needed
is a strong justification of this apprenticeship learning
framework and our learning algorithm.

7. Extensions

We now describe two extensions of this work de-
signed to make it applicable and usable in domains that
might not fit all of the assumptions (specifically de-
terminism or stationarity) made in the studies above,
and discuss how to translate our learned models into
more familiar planning operators. We begin by dis-
cussing services where relations inT ∗ may only hold
with some probability and show that our data struc-
tures and learning algorithm can be adapted to such
cases. We then discuss a variant of our core algorithm
for the non-stationary case, and finally we describe
how classical planning operators can be mined from
task graphs.

7.1. Stochastic Services and Probabilistic Relations

Thus far, we have considered all services to be deter-
ministic. That is, for a given input graphGI , a service
always produces the same output graphGO. While the
agent may not be able to predict the full instantiation
of GO (the object names themselves), the deterministic
assumption did allow the algorithm to predict the se-
mantic edges (and hence the relations between objects)
expected inGO. But suppose that a semantic edgee is
only valid in 95% of instances ofGO. Under the de-
terministic assumption, once any of the5% of outputs
that do not containe is encountered, Algorithm 1 will
prune this edge and never bring it back. While the al-
gorithm has made the correct choice for the determin-
istic case (the edgee is not guaranteed to hold in every
instance of the task) this result is somewhat unsatisfy-
ing becausee is valid in the vast majority of cases.

To analyze such a situation, we will make the sim-
plifying assumption that each semantic edgeei occurs
independentlywith a probabilityP (ei) ∈ [0, 1] and
that there is no distribution to be learned on the ap-
pearance of missing elements, but as with our previ-
ous analysis, edge validity can still be checked when a

node is empty (count([])=0). A more complicated anal-
ysis may be possible when we consider a distribution
over missing elements.

Analyzing such situations is not possible in the
original mistake-bound paradigm, which is only de-
fined for deterministic hypothesis classes. However,
the recent introduction of theMistake Bound Predictor
(MBP) framework [28] established a similar analysis
tool with important properties for apprenticeship learn-
ing in the stochastic setting. Briefly, an MBP learner
is one that makes a prediction on the probabilities of
all the outcomes of a given action (in this case the re-
lations that will hold after a service call). Amistake
is made in this framework if the probabilities of these
outcomes are outside of anǫ tolerance (based on some
norm) of the true probability distribution. An MBP
bound is obtained by showing that, with probability
1− δ, only a polynomial number of such mistakes will
be made for a given hypothesis class. We can now state
the following about the learnability ofGT in the MBP
framework under with the assumptions listed above.

Proposition 3. The task graph representation
with associated independent probabilities for
each edge can be learned with an MBP bound of

O( |M|2|GT |4

ǫ2
ln( |M||GT |2

δ
)) where ǫ bounds the sum

of the errors over all edge probabilities, and where
|GT | is the number of nodes in the true task graph.

Proof. First, in the case where there are no missing
elements and the edge probabilities are all indepen-
dent, each service in a trace gives us a binomial sam-
ple for each edge’s occurrence. Applying Hoeffding’s
inequality, we can state that eachP (ei) can be accu-
rately estimated (with probability1−δ) after 1

2ǫ2
ln(2

δ
)

samples. However, since we require the total error in
probabilities to be≤ ǫ, we need to ask for eachP (ei)
to be learned with accuracy ǫ

|M||GT |2 . We also need
to apply a Union Bound over all the edges (forcing
their individual failure probabilities to be δ

|M||GT |2 )
to ensure a total failure probability ofδ. Thus, after
|M|2|GT |4

2ǫ2
ln(2|M||GT |2

δ
) samples, the joint probability

of all edges will (with probability1 − δ) be learned
with a total ofǫ error throughout the whole task graph.

When nodes may be optional (empty instances), the
validity of edges can be checked even when nodes they
connect to have no instances (count([])= 0). However,
to check this validity our algorithm must at least know
such nodes exist. Therefore, we will potentially need
at worst|GT | mistakes/traces to reveal each node. But,
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minimum member of price as it now includes taxes), and a change in the Id’s that makes the prefix relation true.

we can simply add in these extra mistakes and the

MBP bound remainsO( |M|2|GT |4

ǫ2
ln( |M||GT |2

δ
)).

This analysis shows that under simplistic conditions
(where each edge’s validity occurs independently),
task graphs with probabilistic edges are efficiently
learnable. In cases whee these independence assump-
tions do not hold, learning algorithms should be able to
leverage assumptions such as edges being condition-
ally independent of other edges given their neighbor-
ing to avoid learning about the full joint probability of
edge occurrences, but we leave such analysis to future
work.

7.2. Non-stationarity: Adapting to Changing Services

While large-scale changes in service behavior are
usually announced by the service providers, small
changes, such as the addition of content (like chang-
ing the format of a date or the name of a publisher
of a book now being reported) are often made with-
out much fanfare. Anecdotally, we saw these sort of
changes even during our own study of Google web ser-
vices, where minor changes in the structure or con-
tent of the XML responses caused changes to the task
graph that would not have happened without the for-
mat shift. However, our data-driven approach can be
extended to handle such small variations, and automat-
ically refine its task-graph model. We now outline and
briefly demonstrate how such a procedure would oper-
ate.

As an example of a changing service, consider the
“before and after” depiction of a slightly modified

flight lookup service in Figure 7. The original version
(left) is the same as theFlightLookup from Figures
1 and 2, but several changes are made in the newer
version (right). First, there is a new node indicating
the Airline running each flight, and the MaxPrice node
has been eliminated. Also, the MinPrice node is now
meant to represent the minimumtotal price (with fees
and taxes), and therefore the “min” and member rela-
tions between this node and the Price node no longer
hold. Finally, the instances of the Id node contain the
name of the destination city prepended onto the origi-
nal Id string. To capture this, we can consider an extra
relation inM called “prefix”, which is true when an
instance is a prefix (but not the equivalent) of another.
Notice that in the originalFlightLookup, all such re-
lations would have been eliminated during learning.

We now consider the problem of noticing such
changes and adjusting our task graph accordingly. We
note that this problem is one of determining non-
stationarity, a particular vexing problem for most ma-
chine learning algorithms and the inherent difficulties
of such problems appear here as well. For instance,
when seeing a node added for the first time, does that
indicate that a shift has been made in the service de-
scription or that the node was just optional and hith-
erto not seen? Without assumptions on the probabil-
ity of optional nodes, such questions will not be gener-
ally answerable, so we assume that every optional node
will appear with probability at leastρ while a service
has not changed.

In the task graph representation, there are four kinds
of service changes that may be encountered, each of
which occurs in the example from Figure 7. The first
two are that a node may be added (Airline) or deleted
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(MaxPrice). Such changes can be handled by the cur-
rent algorithm by annotating the node as optional (sim-
ilar to the adjustments from Section 4.2), which ini-
tially is the correct thing to do. But as mentioned
above, if the service really has changed, then this node
is not really optional, so if a parameterρ is known,
we can later discard this annotation for an added node.
Similarly, for a deleted node like MaxPrice, we can ini-
tially annotate it as optional when it first disappears,
and then once the probability of the node slips under
ρ, discard the node entirely. Thus we can change the
adapted block from line 22 of Algorithm 1 (which has
already been adapted to handle∗ and ? notations in
Section 4.2) to perform the following operations:

– Let w be a sliding window that is no larger than
the total number of traces seen so far. On every
episode, updatepi to be the frequency of nodeni

appearing in the lastw episodes.
– If a nodeni has just appeared (thus receiving an

annotation of∗ or ?), setpi = 1
w

.
– If a nodeni has its annotation changed to∗ or ?,

setpi = w−1
w

.
– If a nodeni with a ∗ or ? annotation haspi = 1

then remove the annotation.
– If pi < ρ, deleteni and all edges leading in or out

from it.

In our example, these rules cause the system to
initially add Airline as an optional node (? annota-
tion), but after enough examples, this annotation will
be removed. Also, the MaxPrice node will be initially
marked as optional, but eventually eliminated as it does
not reappear after the change. This takes care of nodes
that changed when the service shifted, and since all
possible edges are considered when new nodes are in-
troduced, these rules will also cover new edges for the
new nodes.

Now we consider the case where the same nodes ex-
ist, but semantic edges have been added or deleted due
to the service change (the prefix edge and the deleted
min and member edges to MinPrice in the updated
FlightLookup). In the latter case, our deterministic al-
gorithm will simply eliminate edges that do not appear
in a trace after the change. However, to “bring back”
edges that were previously eliminated (like the prefix
edge), we must recheck every edge that appears in a
trace to see if it has reliably appeared in the recent win-
dow w. We can do so by keeping track of the proba-
bility of each edge over a sliding windoww and only
reporting edges that occur more frequently thanρ.

Using the modifications described above, our learn-
ing system can successfully adapt and even alert users
to small changes in a service description. Alerts can be
triggered whenever edges are added back intoGT or
whenever optional annotations are removed or nodes
are deleted, all of which signal a definitive change in
the service definition. However, we note that the mono-
tonic convergence of our learning algorithm (and the
accompanying mistake bounds) are lost in the non-
stationary case, but this is to be expected since the tar-
get task is shifting over time.

7.3. Mining Planning Operators

A number of planners have been developed in the
web-service composition community [6,14,15]. While
this paper focussed on learning task-dependent seman-
tics in the form of a task graphGT , we now discuss fu-
ture work on an extension for mining task-independent
operators (as in Table 1) from such graphs. The goal
of such an effort would be to mine operator descrip-
tions of individual services from the graph by treat-
ing the output nodes as literals added to the current
stateand the links to previous services as precondi-
tions for executing the service. A number of planners
have been developed in the web-service composition
community [6,14,15]12 that could be used with these
mined operator descriptions since they generally cover
richer languages than our own.

There is no standard language for web-service oper-
ators, though many proposals exist (OWL-S, WSDL-
S, etc.). Almost all share the idea of input and out-
put parameters for the service, and pre/post-conditions
involving them. These common structures can be de-
rived from a task graph by treating the output nodes as
literals added to the currentstateand the links to pre-
vious services as preconditions for executing the ser-
vice. However, the target language will have an im-
pact on how much information fromGT is actually
ported to the new operators. For instance, if the out-
put nodes are linked to nodes from previous services
that are not linked to the inputs, then new variables that
will already be grounded at the service’s invocation
need to be introduced into the operator’sscope(as with
“Home” and “DestCity” in Table 1), reminiscent of the
injection of deictic references [19]. But if a language

12Interestingly, the last planner listed considered planning with
operators derived (by hand) from Amazon Web-Service descrip-
tions, which served as our real world testbed, so this may be anatural
vein for future work.
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FlightLookup (City1, City2, Start, End)

PRE: Equal(City1, Home),Equal(City2, DestCity)...

ADD:Result(X), NumRes(Y), Flight(Z), Part(Z, X), Part(Y, X),
ListCount(Y, Z)...

Table 1

Partial planning operator from theFlightLookup service from Fig-
ure 2

with more limited scope (similar to STRIPS+WS [27])
were used, these links would not be represented in the
operator, potentially making the algorithm faster, but
sacrificing richness in the semantics.

SinceGT is built from a single task, these descrip-
tions will be heavily biased, but they could then be
refined using other tasks. That is, severalGT ’s can
be merged by dropping edges that do not appear in
all the graphs. Links between nodes within a service
(such as the “Count” relationship between NumRes
and Flight+) can easily be resolved in the unified ver-
sion, but links to nodes outside of the service (e.g. pre-
conditions based on the links back, as in theFlight-
Lookup operator) are more complicated as they re-
quire a stronger language to maintain the same se-
mantics as the task graph, for instance either a dis-
junction or more intimate knowledge of the types of
each node. This is where the connection between in-
put/output nodes and ontologies would be helpful, and
hence the combination of this work with the earlier-
mentioned work on learning of service parameter clas-
sification, or semi-automatic schema merging between
the XML tags in examples and ontologies, as consid-
ered in [20] seems advisable. But notice that even with-
out these inter-service links, service descriptions with
limited semantic scope (similar to the scoping restric-
tions of STRIPS) can be achieved. Such scoping re-
strictions would again make the language more restric-
tive than the general task graphs we have presented,
but the size of the operators would likely be more rea-
sonable.

8. Related Work

A previous application [3] of Inductive Logic Pro-
gramming (ILP) showed promise in learning web-
service descriptions from examples, based on known
descriptions of other services. Unlike their approach,
which relied on heuristic search and “sufficient” data,
we have focussed on algorithms that can guarantee
high performance with a limited amount of data. Our
earlier work [27], performed a sample complexity
analysis of learning planning operator descriptions in

a restricted language, but did not explicitly consider
relations between operators, and the operators had ex-
tremely limited scope. The Task Graph representation
itself bears resemblance to the structure from Simulta-
neous Learning and Filtering (SLAF) [23]. However,
unlike SLAFs our task graphs cannot represent arbi-
trary boolean formulas, but do have positive sample ef-
ficiency results.

A separate track of research focusses on creating
web-service descriptions for heterogeneous sources
based on a central ontology. This thread includes ac-
quiring descriptions using text-mining algorithms on
the service’s documentation [5], and the use of ontol-
ogy merging techniques applied to full (but not directly
compatible) semantic descriptions of services [12,7].
However, both require an existing domain ontology
and large amounts of service documentation, and
even in more adaptive variations that use service in-
stances [11,10], the focus on universal descriptions
and semantic annotation differs from our goal of min-
ing task specific relations between concepts directly
from relatively (compared to full semantic descrip-
tions) easy to find collections of XML documents used
to communicate to and from the services.

There has also been work on better interfaces for
non-technical users to specify web service descrip-
tions. This includes mashup interfaces for expert tech-
nical users [16], mechanisms for mashing up service
user interface components [4], and interfaces for users
with varying levels of technical skills, including a
basic spreadsheet-style interface [18]. However, our
work differs from these efforts because it does not re-
quire users to have any technical abilities beyond what
they already use to complete their task, and our sys-
tem can learn service and task descriptions that the
user may not even be able to describe. This last point
is critical as users in a complex workflow often de-
scribe “knowing how” to execute the process but be-
ing “unable to explain exactly how they do it”. Also,
when users are comfortable using interfaces as de-
scribed above, and when they have a fair amount of
background knowledge they wish to directly encode,
these intuitive interfaces could be used to bootstrap
a task-graph, and our apprenticeship learning system
could then be used to fill in missing relations that seem
to occur frequently.

Another area that future iterations of this work can
draw upon is the field of workflow induction (also
known as “process mining”) [26]. This field is con-
cerned with inducing models of tasks (but usually only
the sequence of calls, not the dataflow) that contain



T.J. Walsh et al. / Learning Web-Service Task Descriptions from Traces 23

loops, conditions, and concurrency, usually represent-
ing the task with a Petri Net [17]. Learning such pow-
erful structures is inherently intractable (Petri Nets can
represent Context Free Grammars), and even restrict-
ing the form of these nets usually leads to super poly-
nomial learning times [26]. However, with certain re-
strictions systems from the field of workflow induc-
tion [25] could be used to learn these more complex
versions ofS . Along the same lines, the overall prob-
lem of learning the structure and flow of web ser-
vices bears resemblance to the problem of program in-
duction [8], which has been studied empirically with
heuristics, but has not produced sample complexity re-
sults.

More recent work on Workflow Induction from
Traces (WIT) [29] has moved from just learning the
sequence of calls in a workflow to also modeling the
dataflow. These dual goals are more in line with our
own, though in this paper we have focused almost ex-
clusively on the latter. The WIT algorithm considers
a larger class of workflows (“witty workflows”) than
our work in terms of the service calls (S) and em-
ploys powerful grammar induction algorithms to ex-
tract structures like loops and concurrency. However,
when modeling the dataflow (R), WIT considers only
equality (soM = {=}), so in that sense they consider
a more restricted language. WIT is both a sound and
complete algorithm for learning the more complicated
structure (as well as the more restricted dataflow). Our
work has made harsher restrictions to the shape of
the workflow to ensure that only a small number of
traces (rather than just a countable amount) are needed
to learn the task. However, we have considered a far
more expressive language for modeling the dataflow.
Thus, there seems to be a promising future in combin-
ing these two algorithms using the grammar induction
(and some heuristics) from WIT to learn complex ser-
vice call patterns, with TGLA used to learn a semanti-
cally rich dataflow. Future work combining these two
properties could be quite fruitful, especially for mod-
eling error handling and responses to transaction fail-
ures. In such cases, a process mining component could
learn to identify branches of the control flow that lead
to failure and methods for recovering from it, but the
dataflow learner (our system) would be responsible for
learningwhy such failures were occurring (based on
the learned semantic relations). In this way, our system
and representation provides a potentially useful com-
plementary algorithm for process mining methods.

Finally, a number of planners have been devel-
oped in the web-service composition community [6,

14,15]13. These works considered the problem of de-
termining what sequence of service calls to make to
accomplish a goal whengivenmodels of how the ser-
vices work (relations between inputs and outputs). Our
work can be seen as complementary to theirs because
we are learning (task dependent) models from data,
though Section 7.3 discussed interpretations of our
Task Graph model that could be used with these plan-
ners.

9. Conclusions

This paper described and analyzed practical algo-
rithms for building web-service task descriptions from
traces of users completing these tasks. We showed
that interesting syntactic and semantic structures could
be learned from these traces, including learning about
missing elements, and relations related to element se-
lection, which are very common in web-service do-
mains. We also emphasized empirically frequent data
structures such as lists and operators over them, in-
cluding aggregates (sum, avg, etc.), which are cru-
cial to describing functional semantics of real services.
A chief novelty of this paper is the theoretical results
proving that the learning can be done efficiently– the
number of traces required to learn the full task de-
scription grows polynomially with the size of the task
and the richness of the semantics. Finally, we deployed
this system in real-world testbeds involving tasks using
Amazon and Google services, and showed that these
tasks could be learned without a priori semantic in-
formation for these domains even when tasks involved
services from multiple providers. This innovative ap-
plication of machine-learning techniques and sample
complexity analysis provides a unique perspective on
developing web-service descriptions not beholden to
pre-packaged or hand-tooled definitions.

Acknowledgements

We thank Google and Amazon for providing a large
and diverse set of public web services that were in-
strumental to the experimental section and the devel-
opment of the algorithms. This project is supported by
DARPA IPTO under contract FA8650-06-C-7606.

13Interestingly, the last planner listed considered planning with
operators derived (by hand) from Amazon Web-Service descrip-
tions, which served as our real world testbed, so this may be anatural
vein for future work.



24 T.J. Walsh et al. / Learning Web-Service Task Descriptions from Traces

Appendix

A. Appendix: Proof of Proposition 1

Here, we present the efficiency proof for the Simple
Task Graph Learning Algorithm (Algorithm 1). The
proofs for the more complex task graphs (for instance
those using the Selection templates) follow the same
form.

We begin with a lemma showing that learning the
true task graphG∗

T , which is a task graph whose edges
correspond exactly to the structural edges in the XML
structure graphs of the services inS and semantic
edges corresponding to the real semantic relations (R)
of the task, is sufficient for guaranteeing no mistakes
will be made.

Lemma 1. Using the true task graphG∗
T to make pre-

dictions and choose inputs in the task learning prob-
lem will not produce any mistakes.

Proof. We consider all the possible sources of a mis-
take. First, an agent could provide the wrong inputs to
a service. But usingG∗

T , the agent knows all the valid
semantic links between the input to the service and the
currently known objects, so the agent will be able to
evaluate each potential inputo′ by checking each se-
mantic edgee = 〈n1, nin, λm〉 leading into the input
nodenin (by evaluatingm(I(n1), o

′). We note that for
complex semantics the reasoning may require super-
polynomial computation, as covered in our discussion
of selecting inputs (Section 5). However, this does not
affect the sample complexity.

Mistakes can also be made when the agent declares
what semantic relations will hold between elements of
the task, but since edges inG∗

T appear if and only if
they correspond to relations inR , this cannot happen.

The only other way to make a mistake is to make an
incorrect prediction about the structure of a service, (in
this case predicting a+ annotation) but the nodes of
G∗

T have the true annotations of the true XML structure
graph for all the services, so such a mistake cannot be
made.

Now we will show that Algorithm1 converges to
the true task graphG∗

T in the realizable setting with
no more than a polynomial (in the relevant quantities)
number of mistakes.

Proposition 4. SimpleTaskLearn makesO(((|GO | +
|GI |)|S|)

2|M|) mistakes in the simple web-service
task-learning problem when the target semantics are
representable.

Proof. The initial Task Graph (TG0) is constructed
from the task instanceτ0 and then refined in subse-
quent episodes.TG0 is made up of the XML structure
Tree and semantic edges that are valid with respect to
τ0.

There are at most((|GO| + |GI |)|S|)) nodes in
the entire task graph which means there are((|GO | +
|GI |)|S|)

2 possible unlabeled edges, which is then
multiplied by the number of potential labels,|M|
(since |M| + 2 = |Λ|) to give us O(((|GO | +
|GI |)|S|)

2|M|) possible semantic edges represented
in τ0.

In each episode, the currentGT is used (as in
Lemma 1) to choose the inputs and make predictions
about what relations hold and what structure will be
seen in each subsequent service instance. If multiple
edges leading into a node suggest different semantics
(for instance if a “min” and “max” edge both appear
between two nodes), one is picked arbitrarily.

For each of the predictions made based on semantic
edges〈n1, n2, λm〉, one of three cases applies (where
we usem(n1, n2) as shorthand form(I(n1), I(n2))):

1. The prediction is correct,m(n1, n2) is true, and
no other edges〈n1, n2, λm′〉 for m′ 6= m were
proven invalid. No action needs to be taken.

2. The prediction is correct,m(n1, n2) is true, but
another edge〈n1, n2, λm′〉 for m′ 6= m has been
shown to be invalid with respect to the current
task instance. The latter edge is removed from
the graph.

3. The prediction is incorrect,m(n1, n2) is false,
resulting in a mistake. This edge, and all other
edges〈n1, n2, λm′〉 for m′ 6= m that are invalid
with respect to the trace (task instance) are re-
moved from the graph.

The worst case, in terms of the mistake bound,
is that all the graph refinements afterτ0 occur be-
cause of case3 and that only one refinement hap-
pens per task instance. However, because there are at
mostO((|GO | + |GI |)|S|)

2|M|) edges inGT to be-
gin with, and because edges are never added back into
the graph once they are removed, onlyO((|GO | +
|GI |)|S|)

2|M|) such mistakes can be made.
All that is left now is to bound the number of mis-

takes made when predicting the+ annotation (other
annotations later in the paper are dealt with similarly).
There areO(|GO | + |GI |)|S|) nodes, and initially all
of those that are not lists inτ0 are considered single-
tons (no annotations). The algorithm can only make
mistakes when predicting these cannot be lists when
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in fact they turn out to be lists, at which point their
annotation is changed to+ and never changes back.
Since there is evidence that these elements can oc-
cur as lists, this must be the true annotation for the
node in the service. This annotation learning intro-
ducesO(|GO| + |GI |)|S|) mistakes.

In the realizable case, whereG∗
T exists, the edges

in TG0 but notG∗
T will be eliminated and all incor-

rect annotations will be made (a simple inductive ar-
gument shows that the same mistake is never made
twice by the agent), so the algorithm converges to
G∗

T and makes at mostO(((|GO | + |GI |)|S|)
2|M| +

(|GO| + |GI |)|S|)) = O(((|GO | + |GI |)|S|)
2|M|)

mistakes.
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