
Transferring State Abstractions Between MDPs

Thomas J. Walsh thomaswa@cs.rutgers.edu

Lihong Li lihong@cs.rutgers.edu

Michael L. Littman mlittman@cs.rutgers.edu

Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854

Abstract

Decision makers that employ state abstrac-
tion (or state aggregation) usually find solu-
tions faster by treating groups of states as
indistinguishable by ignoring irrelevant state
information. Identifying irrelevant informa-
tion is essential for the field of knowledge
transfer where learning takes place in a gen-
eral setting for multiple environments. We
provide a general treatment and algorithm
for transferring state abstractions in MDPs.

1. Introduction

The fields of “transfer learning” and state abstraction
are closely related. In transfer learning, an agent at-
tempts to reuse knowledge from several source domain
instances in one or more (possibly before unseen) tar-
get domain instances. This goal requires some notion
of a “generalized” or “abstract” state space where rea-
soning can be done and applied to any instance in the
set. Thus, deciding what knowledge to transfer be-
tween environments can be construed as determining
the correct state abstraction scheme for a set of source
instances and then applying this compaction to a tar-
get instance. In this paper, we present an algorithm
for accomplishing this abstraction transfer in struc-
tured Markov Decision Processes (MDPs) (Puterman,
1994) based on prior work that formalized abstraction
in MDPs (Li et al., 2006) and prior work in trans-
ferring information for acting optimally in multiple
MDPs (Guestrin et al., 2003; Jong & Stone, 2005).

2. Definitions

MDPs can be described as a five-tuple 〈S, A, P, R, γ〉
where S is a finite set of states; A is a finite set of

Appearing in the ICML-06 Workshop on Structural Knowl-
edge Transfer for Machine Learning, June 29, Pittsburgh,
PA, Copyright 2006 by the author(s)/owner(s).

actions; P is the transition function; R is a bounded
reward function; and γ ∈ [0, 1] is a discount factor.
In this paper we deal with structured MDPs, where
the state space is comprised of n multi-valued fea-
tures f1, · · · , fn. A policy, π : S 7→ A, maps states
to actions. The state-action value function, Qπ(s, a),
is the expected cumulative reward received by tak-
ing action a in state s and following π thereafter. A
reinforcement-learning agent (Sutton & Barto, 1998)
attempts to learn an optimal policy π∗ with value func-
tion Q∗(s, a). An abstraction is a function φ : S 7→ S̄,
where S is the ground state space and S̄ the abstract

state space.

We define “transfer learning” in structured MDPs in
terms of a distribution D over possible target MDPs,
which share some common features (such as states de-
fined in terms of the same variables or relations). Us-
ing a set Ms of m source MDPs sampled from D, we
wish to uncover some information that allows us to
maximize the following speedup ratio:

EMt∼D {T (Mt)}

EMs∼D,Mt∼D {T (Mt|Ms)}

where T (Mt) is the time needed to find an optimal
policy in a target MDP, Mt, and T (Mt|Ms) is the
time needed to find an optimal policy if information
is transferred from Ms. In this paper, we focus on
learning and transferring MDP abstractions.

3. Prior Work

In this section we review several intuitive definitions of
abstraction for MDPs, present several key properties
of these abstractions and discuss previous attempts to
achieve knowledge transfer via abstractions.

3.1. Five Types of Abstraction

Defining state-abstraction rules for MDPs has been
the focus of previous work, including a recent uni-
fied treatment of the problem (Li et al., 2006), which
provides an exhaustive list of previously proposed ab-
straction techniques as well as defining five abstrac-

Transferring State Abstractions Between MDPs

tion schemes based on seemingly important features
of MDPs: φmodel, φQπ , φQ∗ , φa∗ , and φπ∗ . Intuitively,
φmodel preserves the one-step model (e.g., bisimula-
tion (Givan et al., 2003)); φQπ preserves the state-
action value function for all policies; φQ∗ preserves
the optimal state-action value function (e.g., stochas-
tic dynamic programming (Boutilier et al., 2000), the
G-algorithm (Chapman & Kaelbling, 1991), Symbolic
Dynamic Programming (Boutilier et al., 2001; Groß-
mann et al., 2002), or Q-RRL (Dzeroski et al., 2001));
φa∗ preserves the optimal action and its value (e.g.,
utile distinction (McCallum, 1995)); and φπ∗ preserves
the optimal action (e.g. Policy Irrelevance (Jong &
Stone, 2005) or P-RRL (Dzeroski et al., 2001)). 1

3.2. Abstraction Properties

Here, we present several known theoretical results for
the five abstraction schemes, focusing on how they af-
fect planning and learning algorithms. We refer the
reader to previous work (Li et al., 2006) for the proofs
as well as an expanded analysis of the abstraction
schemes, including empirical evaluations.

First, we consider whether standard dynamic-
programming algorithms such as value iteration and
policy iteration, when applied to the abstract MDP
M̄ yield an optimal policy π̄∗ that maps to an optimal
policy in the ground MDP.

Theorem 1 With abstractions φmodel, φQπ , φQ∗ , and

φa∗ , the optimal abstract policy π̄∗ is optimal in the

ground MDP. However, an optimal policy with abstrac-

tion φπ∗ may be suboptimal in the ground MDP.

Next, we consider the problem of learning the value
function, where the agent estimates the optimal value
function based on experience. We extend the standard
Q-learning update to the abstract MDP as:

Q(φ(st), at)
αt←− rt + γ max

a′

Q(φ(st+1), a
′).

Theorem 2 Q-learning with abstractions φmodel,

φQπ , or φQ∗ converges and yields a policy that is op-

timal in the ground MDP. Q-learning with abstraction

φa∗ does not necessarily converge, but will converge

with a fixed behavior policy; in either case, it yields

a value function whose greedy policy is optimal in the

ground MDP. Q-learning with abstraction φπ∗ can con-

verge to an state-action value function whose greedy

policy is suboptimal in the ground MDP.

A more detailed discussion of this result, with exam-
ples and an extension to model-based reinforcement

1We note that several of these examples are not the
coarsest possible implementations of their respective ab-
stractions, including those listed for φQ∗ and φπ∗ .

learning, is provided in previous work (Li et al., 2006).
Since these abstractions are defined independently of
the language used to represent the state space, these
results are applicable to domains specified in any lan-
guage, including logical ones (Dzeroski et al., 2001;
Boutilier et al., 2001). The preceding results are con-
sistent with the negative results for φπ∗ in the state ab-
straction (Gordon, 1996; Jong & Stone, 2005) and re-
lational reinforcement learning (RRL) literature (Dze-
roski et al., 2001).

3.3. Abstraction Transfer in Prior Work

Many of the positive transfer-learning results have ap-
peared in the RRL literature (Dzeroski et al., 2001;
Guestrin et al., 2003), where a state space is described
using a relational or even full first-order language. Al-
though the richer representations do facilitate knowl-
edge transfer, the practicality of these measures is in-
cumbent upon the abstraction techniques used to com-
pact these often large state spaces. For example, in the
relational extensions of value iteration (Boutilier et al.,
2001; Großmann et al., 2002) and Q-learning (Dzeroski
et al., 2001), a variant of φQ∗ is used to keep the back-
ups from expanding the state space far beyond the size
needed to represent the value function.

Our algorithm for abstraction transfer is closely re-
lated to previous work on discovering irrelevant state
variables with policy irrelevance (Jong & Stone, 2005).
Our main contribution is extending this work to the
complete range of abstractions discussed in Section 3.1
and developing theoretical guarantees for the behavior
of traditional planning and learning algorithms in the
induced abstract target environments, dependent on
the choice of abstraction, φ.

4. The GATA Algorithm

4.1. Motivation and Overview

In RRL, abstract value functions are often transferred
to new domain instances, so in essence, both the value
function and the abstraction are transferred. But,
transferring the source values themselves often just
bootstraps the value function in the target instance,
where learning or planning algorithms must still be
used to find the true optimal policy. Also, previous
work has indicated that transferring value functions
may not be very general in the real world, as they de-
pend critically on problem sizes (Dzeroski et al., 2001).
Instead, we can induce a speedup by just transferring
the learned abstraction scheme from the source envi-
ronments to the target, and then planning or learning
in this smaller space. More formally, given a set of m

source MDPs as described earlier, we wish to apply an

Transferring State Abstractions Between MDPs

Source MDPs

Target MDPs

(0)
m

sam
ples ~ D

Solved source MDPs

(1) Any MDP solver

Abstract source
MDPs

(2)

Relevant features

a a,b
a

(3) Feature
selection

a, b

Relevant features

Abstract
Target MDP

(4) Conflict
resolution

Target MDP sampled ~ D

(5) Apply to

target MDP

3
0

1

5
-1
0

start
-1

-1

CounterUp: (Counter + 1) mod d
Reward = –1

Counter[0…d-1]

ColorUp: (Color + 1) mod d
Reward = (-1 * Color) –1

Color[0…d-1]
As shownY[0-1]
As shownX[0-1]
Action outcomes/rewardsVariables

Y

X

(a) (b)

Figure 1. (a) GATA: The General Abstraction Transfer Algorithm; (b) The example world used in Section 5.

abstraction technique to compact each source instance
without sacrificing the ability to plan or learn opti-
mally. Then, we wish to unify these source abstrac-
tions and apply this unified abstraction to the target
environment. The General Abstraction Transfer Algo-
rithm (GATA), illustrated in Figure 1 (a) implements
this abstraction transfer.

4.2. Implementation

In Step (1), the source MDPs are solved using a plan-
ning or learning algorithm. In Step (2), an abstraction
scheme, such as φQ∗ , is applied to each of the solved
source MDPs to produce abstract source MDPs. We
note that if Step (2) involves an abstraction scheme
that does not require solving or learning the MDP
(e.g. φmodel given the MDP), then Step (1) is not nec-
essary, but value-function-based abstraction schemes
often yield greater compaction (Li et al., 2006). In
Step (3), we construct a set of relevant features, F ,
and irrelevant features, F̄ , for each abstract MDP. To
avoid problems due to feature correlation (e.g. alias-
ing) this construction is performed incrementally. A
feature f is considered irrelevant with respect to ab-
straction φ if and only if the abstraction that ignores
f and the features currently in F̄ , denoted φf∪F̄ , is
finer than φ. That is, φf∪F̄ (s1) = φf∪F̄ (s2) implies
φ(s1) = φ(s2). If so, f is added to F̄ , otherwise it is
relevant and added to F . Notice we are finding the
relevant features consistent with φ in each MDP, not
necessarily the minimum features needed to preserve
the ability to learn or plan optimally. In Step (4), we
resolve conflicts over relevance between the multiple
sources (multiple F ’s) in a “safe” manner where a fea-
ture is deemed “relevant” for the target environment
if it was tagged as relevant in any of the source en-
vironments. In Step (5), the resulting feature-based
abstraction function (which ignores all features except

those determined to be relevant in Step (4)) is used to
compact a target MDP. The applicability of the op-
timal policy learned in such reduced target MDPs is
discussed below.

4.3. Discussion and Theoretical Results

As long as m (the number of source MDPs) is large, the
following theorems hold (proofs omitted due to space
constraints):

Theorem 3 Replacing φ in GATA with abstractions

φmodel, φQπ , φQ∗ , or φa∗ , the optimal policy in the

abstract target MDP, π̄∗, is optimal in the ground tar-

get MDP. However, an optimal policy with abstraction

φπ∗ may be suboptimal in the ground target MDP.

Theorem 4 Using Q-learning in the abstract target

MDP produced by GATA we have the following cases:

1. If φ is replaced by φmodel, φQπ , or φQ∗ , Q-learning

in the resulting abstract target MDP converges to

the optimal state-action value function and policy

in the ground target MDP.

2. If φ is replaced by φa∗ , Q-learning in the result-

ing abstract target MDP does not necessarily con-

verge. However, it converges when using a fixed
behavior policy. In either case, it yields a value

function whose greedy policy is optimal in the

ground target MDP.

3. If φ is replaced by φπ∗ Q-learning in the result-

ing abstract target MDP can converge to an state-

action value function whose greedy policy is subop-

timal in the ground target MDP. However, policy

search methods may still be effective.

These results help justify the admittedly daunting dis-
covery times for φQ∗ and φa∗ (which involve determin-
ing the optimal value functions for the ground source
MDPs). Essentially, we are willing to pay the high

Transferring State Abstractions Between MDPs

price for discovery of φQ∗ or φa∗ if this provides infor-
mation on what state variables (in the factored case)
or relations (in the RRL case) can be ignored for plan-
ning or learning optimally in the target MDP.

5. An Example Domain

We demonstrate the power of GATA and the pitfalls
promulgated in the previous two theorems using a sim-
ple grid world and three of our abstraction schemes
(φQ∗ ,φa∗ ,and φπ∗). The source instance, made up of
four features: X, Y, a “counter”, and the color of the
lighting, is depicted in Figure 1 (b). All MDPs in this
class have four state variables and four actions, but
each instance has a different limit, d, on the dimension-
ality of Color and Counter. The actions CounterUP
and ColorUP are available at any location. We de-
note the feature-based abstraction scheme developed
by GATA with parameter φ as A(φ). The relevant

features uncovered by A(φQ∗),A(φa∗),and A(φπ∗) are
[Color, Y, X],[Y, X] and [X] respectively. Since the
targets can have d values for Color and Counter, the
state space sizes for the abstractions are: none O(d2);
A(φQ∗) O(d); A(φa∗) O(1); A(φπ∗) O(1). Although
A(φπ∗) actually gives the greatest compaction, when
this abstraction (“only use X”) is applied to a tar-
get MDP, standard dynamic programming algorithms
used on the abstract space will yield a policy that is
suboptimal in the ground targets, forcing our speedup
ratio to 0. In contrast, and consistent with Theorem 3,
A(φQ∗) and A(φa∗) will yield abstraction schemes such
that planning in the abstract target space yields a pol-
icy optimal for the ground target, and ensures our
speedup ratio is no less than 1. More generally, we
note that A(φa∗) provides the smallest abstract models
consistent with guaranteed optimal planning. Learn-
ing results are similar (Theorem 4).

6. Conclusions & Future Work

We have presented an algorithm for transferring ab-
stractions learned in source MDPs to target MDPs.
We also provided results concerning the soundness of
planning and learning algorithms in the abstract tar-
get MDPs induced by this algorithm.

The theoretical results of this paper rely on having
enough samples, m, to make sure all features relevant
in any MDP in D are discovered. Studying the effec-
tiveness of GATA based on m and the similarity of the
MDPs in D (in terms of how often and to what degree
each feature is relevant) is an area for future research.
Also, the feature-selection algorithm we outlined (Step
(3)) is only guaranteed to produce the minimal set of
relevant features if all combinations of feature values
represent valid states. Restricting the search space to

keep such sets near minimal in all cases is an area
of future research. Replacing φ in GATA with an ab-
straction scheme that allows for inexact matching (e.g.
Bisimulation metrics (Ferns et al., 2004)) could pro-
duce an abstraction that results in a bounded loss in
the abstract value function for the target MDPs. Sim-
ilarly, a less cautious combination of relevant features
in Step (4) could result in a lossy but still generally
effective abstraction scheme.

Finally, we thank the support of the DARPA Transfer
Learning program.

References

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000).
Stochastic dynamic programming with factored repre-
sentations. Artificial Intelligence, 121, 49–107.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic
dynamic programming for first-order MDPs. IJCAI (pp.
690–700).

Chapman, D., & Kaelbling, L. P. (1991). Input general-
ization in delayed reinforcement learning: An algorithm
and performance comparisons. IJCAI (pp. 726–731).

Dzeroski, S., Raedt, L. D., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning, 43,
7–52.

Ferns, N., Panangaden, P., & Precup, D. (2004). Metrics
for finite Markov decision processes. UAI (pp. 162–169).

Givan, R., Dean, T., & Greig, M. (2003). Equivalence no-
tions and model minimization in Markov decision pro-
cesses. Artificial Intelligence, 147, 163–223.

Gordon, G. J. (1996). Chattering in Sarsa(λ) (Technical
Report). CMU Learning Lab.

Großmann, A., Hölldobler, S., & Skvortsova, O. (2002).
Symbolic dynamic programming within the fluent cal-
culus. IASTED International Conference Artificial and
Computational Intelligence (pp. 378–383).

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in rela-
tional MDPs. IJCAI.

Jong, N. K., & Stone, P. (2005). State abstraction discov-
ery from irrelevant state variables. IJCAI.

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a
unified theory of state abstraction for MDPs. 9th Inter-
national Symposium on Artif. Intel. and Math..

McCallum, A. (1995). Reinforcement learning with selec-
tive perception and hidden state. Doctoral dissertation,
University of Rochester, Rochester, NY.

Puterman, M. L. (1994). Markov decision processes: Dis-
crete stochastic dynamic programming. New York: Wi-
ley.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

