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Online Regression for Data with Changepoints using
Gaussian Processes and Reusable Models

Robert C. Grande, Thomas J. Walsh, Girish Chowdhary, Sarah Ferguson, and Jonathan P. How

Abstract—Many prediction, decision making and control ar-
chitectures rely on online learned Gaussian Process (GP) mod-
els. However, most existing Gaussian Process (GP) regression
algorithms assume a single generative model, leading to poor
predictive performance when the data are nonstationary, i.e.
generated from multiple switching processes. Furthermore, exist-
ing methods for GP regression over nonstationary data require
significant computation, do not come with provable guarantees
on correctness and speed, and many only work in batch settings,
making them ill-suited for real-time prediction. We present an
efficient online GP framework, GP-NonBayesian Clustering (GP-
NBC), which addresses these computational and theoretical is-
sues, allowing for real-time changepoint detection and regression
using GPs. Our empirical results on two real-world datasets and
two synthetic dataset show GP-NBC out-performs state of the art
methods for nonstationary regression in terms of both regression
error and computation. For example, it outperforms Dirichlet
Process Gaussian Process clustering with Gibbs sampling by 98%
in computation time reduction while the mean absolute error is
comparable.

Index Terms—Gaussian Processes, Online, Changepoint Detec-
tion

I. INTRODUCTION

IN many prediction and decision-making applications, it
is necessary to create a model of the environment from

stochastic measurements only. The Gaussian Process (GP)
[1] is a Bayesian nonparametric framework for inference
that has gained popularity in a number of applications in
machine learning and decision-making, such as regression,
[1]; classification, [2]; adaptive control, [3], [4], [5]; and
reinforcement learning, [6]. However, while the majority of
existing GP algorithms for online data assume a stationary, i.e.
time-invariant, distribution, there are numerous online learning
domains, such as stock predictions and aircraft control, for
which the data may involve changepoints: points in time in
which abrupt changes occur to the generating distribution itself
(for example a market crisis or mechanical failure). When
the data contains changepoints, i.e., is non-stationary, any
framework modeling the underlying distribution, such as a
GP, should be augmented to rapidly identify changepoints,
learn new models online, and reuse old models if they become
applicable again. Note that herein, non-stationary refers to
data with abrupt temporal changes and not to spatially non-
stationary GP kernels.
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A common way to address non-stationarity is to augment
the GP input with time or a time-related function [7], [3].
However, using this method causes the GP to forget potentially
useful information from earlier phases, even if no change has
occurred in the generating distribution. It also cannot make
use of previously learned models if they reappear later. The
latter is important in several domains, such as pedestrian intent
prediction [8] and robotic table tennis [9] in which different
behaviors, or models, may be revisited and reused. Previous
attempts at online GP changepoint detection algorithms [10],
[11] are computationally demanding and thus are poorly suited
for applications that require real-time prediction (see experi-
ments section), or lack theoretical guarantees on accuracy and
cannot reuse models after a changepoint occurs.

This paper presents a computationally efficient algorithm for
online regression over data with changepoints: the Gaussian
Process Non-Bayesian Clustering (GP-NBC) algorithm1. The
speed and performance improvements in GP-NBC can be
attributed to the decoupling of the problems of changepoint
detection, regression, and model reuse. This decoupling results
in efficient online learning in the presence of changepoints.
That is, GP-NBC uses fast algorithms for solving each of
these subproblems, providing order of magnitude speed-ups
over previous methods that combine all three problems into
the computation of a single posterior. For inference, GP-NBC
uses a non-Bayesian test based on a Generalized Likelihood
Ratio (GLR) test [12] to detect changepoints and to re-identify
previously seen functions, and performs efficient inference
using a budgeted online GP inference algorithm [13]. Non-
Bayesian tests do not use a prior distribution and therefore
do not require integration over the entire parameter space,
resulting in magnitudes faster computation. Additionally, Non-
Bayesian statistical tests are better suited for applications in
which a prior density function cannot be well-defined over the
changepoint frequency.

GP-NBC is efficient and uses orders of magnitude less
computation than existing methods, and has been designed for
online applications with streaming data. The contributions in
this paper are describing GP-NBC and showing these proper-
ties both theoretically and empirically. On the theoretical side,
we derive polynomial (in the accuracy and GP parameters,
including the covering number of the input space) sample
complexity bounds on the number of inaccurate predictions
by GP-NBC, unlike competing algorithms. Empirically, GP-
NBC is validated on two real-world and two synthetic datasets,

1In this work, the term a “cluster” refers to each previously defined model
over the output domain, and not to a clustering over input domain variables,
as is also common in the literature
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where it is shown to outperform leading hierarchical GP and
changepoint detection algorithms by orders of magnitude in
computational efficiency and prediction accuracy. A prelimi-
nary version of GP-NBC was first introduced in [14], however
the algorithm proposed here has been modified significntly and
the theoretical results further developed.

II. PRELIMINARIES

This section describes the online non-stationary mean pre-
diction problem and reviews related work as well as prelimi-
naries.

A. Problem Definition

In an online non-stationary mean prediction problem, at
each new instant t, a learning agent observes an input xt ∈
U ⊂ Rd, that is not i.i.d., and an output yt drawn i.i.d. from
yt ∼ pi(y | xt). Before the agent receives yt, it observes xt
and must make a prediction µ̂(xt) of the expected value of
the distribution E[yt|xt] = fi(xt) with generating distribution
pi(y | x) ∈ P that changes between changepoints, defined
below. The agent then observes a noisy output drawn from
the generative distribution yt ∼ pi(y | xt). Our objective is
to minimize the total number of mistakes in agent predictions
below some tolerance εE . More formally, we define a mistake
as any timestep where |fi(xt) − µ̂(xt)| > εE . This work
assumes the mean functions belong to a class of functions
F that is Lipschitz smooth and modeled by a GP . We
additionally impose the restriction that the output range is
bounded, Vm = ymax − ymin so that we may use statistical
tools such as Hoeffding’s inequality. In general, this is not
a limiting assumption as for most real-world applications,
measurement values are bounded.

Non-stationarity is introduced when the mean of the under-
lying process changes from fi(x) to some fj(x) at unknown
changepoints. Specifically, it is said that a changepoint occurs
at time t, if at time t, the underlying process mean changes
from fi(x) to fj(x) such that there exists some region Ũ :
∀x ∈ Ũ , |fi(x) − fj(x)| > εE . We call each period in
between changepoints a phase and the objective of the agent
is to minimize the number of mistakes in each phase. In order
to accomplish this, the agent must detect changepoints, learn
models, and potentially re-use previously learned models. To
solidify the problem further, we restrict our attention to the
subclass of problems for which there is a lower bound on the
number of samples between changepoints. This ensures that
there is sufficient time to learn a new model before detecting
a change. Section IV provides sufficient conditions regarding
this lower bound and the realizability of each fi(x) (i.e., how
well a GP captures fi(x)) that lead to a bounded number of
mistakes during each phase).

B. Related Work

Non-stationary data with changepoints are generally han-
dled in the GP literature using one of two categories: online
Changepoint Detection (CPD) algorithms, and batch hierar-
chical Bayesian clustering algorithms. We first review general

CPD algorithms and then focus on online CPD algorithms
which use GPs. Then, we review batch hierarchical GP-
clustering algorithms.

A variety of algorithms exist for Changepoint detection
(CPD) in the field of time series analysis, [12], where often the
goal is for the algorithm to infer points in time in which the
generative parameters of the time series change rather than
attempting to minimize regression error. Several algorithms
for computationally efficient CPD exist for slowly drifting
functions [15], and for abrupt changes [16]. However, for
abrupt changes, existing frameworks either do not use or learn
models, or require the set of all possible models be given to the
algorithm a priori[15]. Alternatively, the framework proposed
here considers the scenario where new models may need to
be learned online.

Previous work on online CPD and time series monitoring
using GPs include GP-Changepoint Detection (GP-CPD) [10]
based on the Bayesian online changepoint Detection (BOCPD)
algorithm [17] and the method described in [11]. GP-CPD
learns a model for every changepoint possibility, and using a
prior, performs posterior inference to obtain a distribution over
changepoint times. Authors in [11] include the changepoint
time in the kernel function and use optimization to determine
the changepoint time. However, these approaches focus on
the problem of instantaneous regression instead of model
learning and require a large amount of computation that
scales with the number of data points, which makes them ill-
suited for real-time decision applications. The experiments in
Section V demonstrate that using such approaches with GP
models requires computation that is not suitable for real-time
applications, and is outperformed by GP-NBC. Furthermore,
there are no associated theoretical guarantees on regression
accuracy with these methods.

On the other hand, batch algorithms using hierarchical mix-
ture models mostly model changepoints using BNP methods,
such as the Infinite Mixture of Experts (referred to in this paper
as DP-GP) [18] and [19], referred to in this paper as MCMC-
CRP. DP-GP uses a Dirichlet prior and Gibbs sampling over
individual data points to obtain the posterior distribution over
model assignments and the number of models. MCMC-CRP
uses sampling as well except the sampling distribution is over
changepoints. In this case, the Gibbs sampler creates, removes,
and shifts changepoints instead of reassigning individual data
points to models. While GP methods using sampling have
had success in a variety of off-line applications, they require
batch data and fail to meet the computational requirements for
many real-time prediction applications, as shown in Section
V. Furthermore, the Dirichlet prior may not converge to the
correct number of models [20] and comes with no guarantees
on regression accuracy or rates of convergence to the true
posterior. It should be noted that the computational require-
ments could be reduced through a variational inference based
approach [21], [22].

Contrasting with the aforementioned algorithms, GP-NBC is
designed specifically for online decision making applications
in which datapoints arrive sequentially in time; our theoretical
results provide bounds on the number of inaccurate predictions
GP-NBC may make per phase and our empirical results show

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNNLS.2016.2574565

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

that GP-NBC is orders of magnitude faster than existing
methods. In contrast to the sample efficiency results for GPs
in the optimization context [23], the bounds given here are
designed specifically for online prediction with non-stationary
data. In our paper, we validate these claims over a synthetic
and two real datasets as described in Section V.

C. Gaussian Processes

We model the mean function fi(x) using a Gaussian Process
(GP). GPs can be viewed as a distribution over functions.
That is, a draw from GP is not a single value, but rather
a function fi(x) : U 7→ R drawn from a distribution p(f).
In particular, a GP is defined as follows: if for any set
of locations (x1, . . . , xn), the resulting marginal distribution
p(f(x1), . . . , f(xn)) is Gaussian, then the process is a GP
[24]. This process has mean µ(x) : U 7→ R and covariance
kernel k(x, x′) : U × U 7→ R. As is common in the
GP literature, it is assumed that the prior is a zero mean
normal distribution, although it should be noted that this is
not limiting in that the posterior is not limited to zero. Addi-
tionally, the experimental section uses the Gaussian covariance
kernel, k(x, x′) = exp

(
−‖x−x

′‖2
2θ2

)
, however, the presented

approach can be extended to other covariance kernels. The
elements of the GP kernel matrix K(X,X) and kernel vector
K(X,xt+1) are defined element-wise as Ki,j = k(xi, xj). In
our work, the measurements y(x) are modeled as being drawn
from a normal distribution around the function mean fi(x),
y ∼ N (fi(x), ω2). Although different observation distribution
models may be used, using a Gaussian model allows for exact
inference over fi(x). Mathematically, the prior distribution
over the union of the observations and the function mean at a
new point xt+1, f(xt+1) is[

~y
f(xt+1)

]
∼ N

(
0,

[
K(X,X) + ω2I K(X,xt+1)
KT (X,xt+1) k(xt+1, xt+1)

])
.

(1)
The posterior distribution of the function mean f(xt+1) at
location xt+1, conditioned on observations ~y = [y1, . . . , yt]

T ,
can be found using Bayes’ Law (Sec. 2.1. of [1]) with mean

µ̂(xt+1) = αTK(X,xt+1), (2)

where α = [K(X,X) + ω2I]−1~y are the weights associated
with each kernel, and covariance for set of points S =
{x′1, . . . , x′k} is defined as

Σ(S) = K(S, S) (3)
−KT (X,S)[K(X,X) + ω2I]−1K(X,S).

Due to the addition of the positive definite matrix ω2I , the
matrix inversion in (2) and (3) is well defined.

In order to quantify the size of the domain U in relation
to the GP model, we use the covering number and equivalent
distance map, as defined below. These definitions are used in
the theoretical results of Section IV.

Definition 1 The Covering Number Nc(U, r) of a com-
pact domain U ⊂ Rd is the cardinality of the minimal set
C = {ci, . . . , cNc} s.t. ∀x ∈ U , ∃cj ∈ C s.t. d(x, cj) ≤ r,
where d(·, ·) is some distance metric.

Definition 2 The equivalent distance r(εtol) is the maxi-
mal distance s.t. ∀x, c ∈ U , if d(x, c) ≤ r(εtol), then the linear
independence test γ(x, c) = k(x, x)− k(x, c)2/k(c, c) ≤ εtol.

It is important to note that while the GP model assumes the
output is normally distributed around the mean, GPs are still
consistent estimators of the function mean fi(x) even when
the output distribution is not Gaussian (see Section IV-B). This
work is concerned primarily with accurate predictions of the
mean function and not accurate characterization of the output
distribution, so the GP model capability suffices. To ease
exposition, we assumes here that fi(x) ∈ R, multidimensional
GP (Vector-GP) extensions are nontrivial, and considered in
[25]

D. Online Budgeted Inference

In general, traditional GP inference scales poorly with
increasing number of data points. The main reason for this
is because a new covariance kernel is added for every data
point considered, that is, every time a new observation 〈xt, yt〉
is obtained. Therefore, the matrix inversion typically used for
prediction scales as O(t3). Hence, in order to enable efficient
GP inference online on resource constrained platforms – for
example robotic platforms with limited onboard computational
power, such as Unmanned Aerial Vehicles – sparsification of
kernels is required to ensure online tractability.

Csato and Opper’s [13] budgeted online GP inference algo-
rithm provides a recursive, rank 1 update, for the weights α
and covariance (3). The rank-1 updates restricts the prediction
computation growth to O(t). In addition, a budget is enforced
on the number of kernel functions that are used by the
algorithm, the data points retained online are referred to as the
active basis vector set. The algorithm in [13] only adds a new
point to the basis vector set, BV , if the data point is sufficiently
different from existing data points in BV . To determine if a
new point is novel, a linear independence test in the underlying
RKHS is used. For the Gaussian kernel, the novelty of a data
point can be captured in the variable γ using the closed form
expression: γt = k(xt, xt)−K(X,xt)

TK(X,X)−1K(X,xt).
When γt exceeds some threshold εtol, the data point is

added to BV . Otherwise, the weights α and covariance Σ are
updated using a rank 1 update, but the updates do not increase
the dimension of BV . If the budget is exceeded, then data
points with highest γi are retained. The main benefit of this
online sparse GP algorithm is that it allocates new basis vector
locations dynamically, thus preventing ad-hoc a priori feature
selection. This sparse approximation scales as O(|BV|) for
calculating the GP mean, and scales as O(|BV|2) for variance,
resulting in significant computational savings. Algorithms are
available for optimizing GP hyperparameters online as well
[26], [10].

E. Hypothesis Testing

In this paper, a hypothesis refers to the proposal that a set of
points is generated from a given model. For two models, H1

and H0 with known priors, the decision rule that maximizes
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the probability of correct model identification is a likelihood
ratio test (LRT):

p(y |H1)

p(y |H0)

Ĥ = H1

R
Ĥ = H0

exp(η) (4)

where η = log ((1− p1)/p1), and p1 = p(H1) is the prior
probability of H1 occuring. If the left hand side is greater
than η, then Ĥ = H1 is chosen, otherwise Ĥ = H0. When
a prior is not available, the problem is formulated as a non-
Bayesian hypothesis test based on the probability of detecting
an event H1 and the probability of a false alarm. The Neyman-
Pearson lemma states that the decision rule that maximizes the
probability of detection subject to some maximum probability
of a false alarm is still a LRT. Other statistics exist for
determining the distance between distributions, such as the
Maximum Mean Discrepancy [27], Hilbert-Schmidt Indepen-
dence Criterion [28], and Rényi divergence [29], however, the
LRT is used as it is intuitively simple and has nice theoretical
properties.

We utilize a variation of the Generalized Likelihood Ratio
(GLR) [12], a non-Bayesian likelihood ratio test, to perform
changepoint detection. The GLR tests for changepoints by
comparing a windowed subset of observations ~yS and ob-
servation input locations S to a null hypothesis. After each
new observation, a new model is created from the same
class of models as the null hypothesis, H, but with the
maximum likelihood statistics corresponding to the data yS ,
H1(S) = arg maxH∈H p(yS | H). If the ratio of the likelihood
of the windowed data with respect to the proposed model to
that of the null hypothesis exceeds some ratio, a changepoint
is detected. The joint log likelihood of a subset of points ~yS
given a GP model is

log p(~yS |S,Θ) =− 1

2
(~yS − µ̂(S))T (Σ(S) + ω2I)−1(~yS − µ̂(S))

− log |Σ(S)|1/2 + C (5)

In the log-likelihood, the first term accounts for the deviation
of points from the mean while the second term weighs the
relative confidence (variance) in the prediction values.

III. THE GP-NBC ALGORITHM

The full algorithm, Gaussian Process Non-Bayesian Clus-
tering, GP-NBC, including a component for using previously
identified models (or clusters), is presented in Algorithm 1.
The main idea of our approach is to decouple the problems
of prediction, CPD, and model re-identification. GP-NBC may
also be initialized with a set of prior models.

The algorithm begins with a (newly initialized) working
model GPw. For the prediction problem, GP-NBC is presented
with xt. Utilizing this data, GPw makes a prediction µ̂w(xt),
and is then updated with observation yt. The subscript w refers
not to a specific model number but rather the current model
being used for predictions. After each observation, the GP
model GPw is saved and enqueued to a queue of finite depth
m, the reason of which is described later.

Next, for the changepoint detection problem, a LRT (Algo-
rithm 2) is used, so we need to construct a set of observations

S that the LRT can compare to the current model (line 6).
While a sliding window may suffice when successive fi(x),
fj(x) differ over all x, if there is sufficient overlap between
functions fi(x), fj(x) one of the following more nuanced
approaches is needed:
• The filtered sliding window rule uses a buffer of size mS

for S and adds points when their log-likelihood is below
a given threshold θ.

• The local sliding window (with delay) rule adds observa-
tions to local version of S, denoted Sd(x), that contains
the most recent mS measurements within a given distance
d of xt. To implement a delay, points are added to the
set S after a delay of m timesteps.

The local sliding window Sd(x) is constructed by adding xt
to Sd(x) at each timestep. If there are more than mS points
in Sd(x) within distance d of xt, then the point with the
oldest timestamp in that region is discarded. The number of
points mS depends on the domain, but generally small mS

on the order of mS ≈ 10 suffices. In practice, points may be
added to the set S as soon they are observed, but in order
to derive theoretical guarantees in Section IV, a delay of m
must be used. This delay ensures that the LRT values are
uncorrelated, which is required for using statistical tools such
as Hoeffding’s Inequality. In practice, this equates to adding
each observation 〈xi, yi〉 to S after m timesteps, at time i+m.
It is worth emphasizing that mS and m are not the same
quantity although both perform similar utilities. mS controls
the number of points used in the GP model, which controls
the variance and speed at which µ̂(x) changes over time; m
averages over the LRT values to determine if a changepoint
has occurred

At every timestep t, the value of the LRT Lt(y) is saved
along with corresponding location xt, when considering the
last m LRT tests for Line 7 in Algorithm 2. We show in Sec.
IV-C that using the latter approach with appropriate parameter
settings results in a bound on the number of mistakes made by
GP-NBC, even in the case of worst-case (adversarially chosen)
inputs. However, we use the filtered sliding window in our ex-
periments as it is simpler to implement and often approximates
the local sliding window well, especially for real-world data
with some (though not strictly i.i.d.) regularities in the inputs.

After obtaining this set, a new candidate GP model, GPS ,
is created from these points, S, using the same basis vector
set as GPw (line 3), and the LRT is calculated for the current
point 〈xt, yt〉 against this model and the current GP. If using a
delay, GP−mw is used for the LRT. If the mean over the last m
LRT values (Lm) increases substantially from the mean LRT
values calculated so far, then a changepoint is declared and
a new model is initialized. If a local sliding window is used,
then when GP-NBC queries Sd(xt) for the mS most recent xi
close to xt, the mS LRT values associated with those points
are used. Likewise, when a point xt is added to Sd(x), the
LRT value Li is saved with it.

If a changepoint is detected, the last m observations are
deleted from GPw before saving the model GPw to memory.
In practice, this is done by saving the GPw model after each
observation, and maintaining a queue of maximum length m.
If a delay is used, then the last 2m points are removed from
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Algorithm 1 GP-NBC
1: Input: (Optional) Set of models
{GP1, . . . , GPN}, max queue length

2: Initialize new working GP, GPw, with µ̂w(x) = 0, ∀x
3: while Input/Output 〈xt, yt〉 available do
4: Predict µ̂w(xt) using GPw
5: Update GPw with 〈xt, yt〉 [13]
6: Add 〈xt, yt〉 to S using rules in Section III
7: Add GP tw = GPw to queue, Q,

{GP t−1w , GP t−2w , GP t−3w , . . .}
8: if Length(Queue) > max length then
9: Dequeue last element

10: if GPw has > R measurements then
11: Call Algorithm 2 with 〈S, 〈xt, yt〉, Queue Q〉
12: Call Algorithm 3 with GPw, basis vectors BVw, and

set of models {GP1, . . . , GPN}

Algorithm 2 Changepoint Detection
1: Input: Set S, Observation 〈x, y〉, Queue Q
2: l1 = log p(y | x,GPw) or if using delay: l1 = log p(y |
x,GP−mw )

3: Create new GP GPS from S
4: l2 = log p(y | x,GPS)
5: Store LRT Li = (l2 − l1)
6: if LRT was calculated for last m observations (i.e. i > m)

then
7: Calculate average of last m LRT:

Lm = 1
m

∑i
j=i−m+1 Lj

8: Calculate average of LRT after last changepoint:
Lss = 1

i−m−1
∑i−m−1
j=1 Lj

9: if Lm − Lss ≥ η then
10: Restore GPw = GP t−mw or to GPw = GP t−2mw if

using a delay , add to set of n models
11: Initialize new model GPn+1, set GPw = GPn+1, set

i = 1
12: else
13: i = i+ 1

GPw, and a queue of maximum length 2m is used (line 8 of
Algorithm 1) . After a changepoint is detected, an element is
dequeued restoring the current model GP tw to the GPw model
m or 2m observations ago: GP t−mw or GP t−2mw . This prevents
points that were potentially generated after a changepoint
from being included in the old model. In applications where
changepoints are relatively infrequent compared to m, the
associated data loss of deleting m points is quite small. After
detecting a changepoint, GP-NBC uses a burn-in period of
approximately R ∈ [2m, 4m] before calculating the LRT again
(line 10).

The CPD portion of GP-NBC tends to perform robustly in
practical applications based on the following intuition. In the
first step, the filtered sliding window selects only anomalous
points while ignoring data that were likely generated by the
current model. In the second step, a new candidate GP model,
GPS , is created from this data, S. If the data are anomalous
simply due to noise in the output, then, on average, the new

Algorithm 3 Compare to Previous Models
1: Input: Model GPw, Basis vectors BVw, and set of models
{GP1, . . . , GPN}

2: µ̂w(BVw) = GPw.predict(BVw)
3: for Each model j in set of models do
4: l1 = logP (µ̂w(BVw) | GPj)
5: l2 = logP (µ̂w(BVw) | GPw)
6: γj = 1

|BVw| (l2 − l1)
7: if γj ≤ η then
8: Store 〈j, γj〉 in an array Γ
9: Set i to be the index of the smallest value in the array Γ

10: Delete current model and set GPw = GPi

model created from these points will be similar to the current
model, and the likelihood of the points given either model will
be similar(i n terms of the likelihood ratio test).

If the data are anomalous because they were drawn from a
new process, then on average, the GP model created from these
points will be substantially different from the current model.
Then, the likelihood of these points will be much higher for
the new model relative to the current model. Lastly, instead
of deciding whether or not a changepoint has occured based
on a single LRT, GP-NBC uses the mean of the last m LRT’s
and compares this to the mean LRT values seen since the last
changepoint. In particular, in Section IV, theoretical guidelines
for setting m are given. In practice, the algorithm is robust to
the selection of parameters m and η, as shown in the empirical
section.

The GP-NBC algorithm is modified to accomodate the
storage and reuse of previous models as such: after at least
R data points are added to a model, GP-NBC uses a LRT
to see if GPw is significantly close to a previous GP model
(Algorithm 3). For this test, the points µ̂w(BVw) are used as an
artificial data set. If the values µ̂w(BVw) are not substantially
different from an old model GPi, i.e. the LRT is below some
threshold, then the new model is deleted and the previously
learned model with the lowest LRT score is used instead. The
basis vectors are chosen in such a manner to adequately cover
the input domain, which prevents over-fitting to one region of
the input domain.

In summary, the computational complexity is O(|BV|2m)
for the LRT and O(|BV|2N) for comparing a current model
to all previous models, due to variance calculations. The
algorithm designer may either limit |BV| for applications
requiring fast computation, or simply allow the sparse GP
algorithm to automatically add points to BV until the do-
main U is adequately covered, i.e. ∀x ∈ U, k(x, x) −
k(x,BV)K(BV,BV)−1k(x,BV)T < εtol. For most applica-
tions, the sparse GP algorithm will stop adding points to BV
after approximating 10-200 points, depending on the size of
the domain and accuracy required.

IV. THEORETICAL ANALYSIS

In this section, we prove bounds on the number of mistakes
(predictions with large error) that GP-NBC will make with
high probability. Since the process generating yt is stochastic,
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the theoretical statements all have a probability of failure δ
that contributes (polynomially) to the number of mistakes
the algorithm might make. This is a necessity when prov-
ing the accuracy of an algorithm such as GP-NBC that is
trained on stochastic values and is in line with traditional
sample complexity analysis frameworks such as PAC [30]. It
should, however, be noted that, the sample complexity bounds
presented here are loose and cover the worst case analysis.
They are provided to show the scalability of our solution,
with increased problem size and are likely too conservative
for choosing real-world application parameters.

We first motivate the choice to use hypothesis testing for
nonstationary model detection. In Section IV-B, we determine
the maximum number of mistakes a GP can make when learn-
ing a single mean function, f(x), by determining a sufficient
condition on the variance (Lemma 1) for accurate prediction
and bounding the number of mistakes before the predictive
variance meets this condition (Theorem 1). In Section IV-C,
we analyze the nonstationary case by showing that if certain
assumptions are met on the class of functions, we can lower
bound the expected value of the LRT (Equation 12); and given
a sufficiently large, but polynomially bounded (in relevant
quantities, including the covering number of the input space),
number of samples m from the new function, (Lemma 3), we
show that GP-NBC will either detect a changepoint or return
accurate predictions (Theorem 2).

A. Motivation
This section serves to motivate the use of the LRT for

CPD using results from the theory of Large Deviations and to
outline the proof structure of Section IV-C. Given two models
H0 and H1, the theory of Large Deviations states given m
i.i.d. observations from a single model H1, the average of the
LRT values will tend towards the KL-Divergence D(H1 |H0)
exponentially fast. When H1 is not known a priori, but there
is an approximate model Ĥ1 built from existing data, the LRT
will tend towards

E[LH1| H0
(y)] = D(H1 |H0)−D(H1 |Ĥ1) (6)

which is the original KL-divergence minus the approximation
error of using a model Ĥ1 instead of H1. See Appendix A for
a proof.

Since the LRT values tend to (6) exponentially fast, it
follows that even for small numbers of m, the LRT will per-
form well. Furthermore, since (6) can be calculated explicitly
for many real distributions, values of η can be set explicitly
beforehand and given intuitive interpretation in terms of distri-
butional differences and modeling error. While H1 and H0 are
unknown beforehand in this application, bounds on its value
can still be determined. In particular, Lemma 2 of Section
IV-C determines a lower bound on the the KL divergence
between two consecutive generating distributions D(H1 |H0),
and assuming an upper bound on the approximation error
D(H1 | Ĥ1), a lower bound on (6) can be found. Lemma
3 then uses Hoeffding’s Inequality to derive a bound on the
number of LRT values, m, such that with high probability the
average of m LRT values will be within some tolerance of the
expected value. At this point, a changepoint will be detected.

In order to apply the theory of large deviations to our appli-
cation in which xi may not be i.i.d., the expectation operator
is conditioned on x such that if H1 is implicitly a function
of x, (6) holds for each x. Furthermore, the assumptions of
boundedness and function smoothness from Section II-A are
used in the proofs. For any arbitrary distribution satisfying
these assumptions, the theorems in the stationary analysis
section, section IV-B hold, but for nonstationary analysis,
further requirements are used. The analysis assumes that xt
are chosen adversarially in order to derive a maximum bound
on the number of mistakes.

B. Stationary Analysis
We begin our analysis by bounding the number of mistakes,

as defined in Section II-A, within a given phase without
a changepoint (that is when the generating distribution is
stationary). This value ultimately determines the rate at which
a new GP model can be learned, and therefore how frequent
changepoints can occur while still learning new separate
models. In the following lemma, a relationship between the
variance of a GP and the probability of making a mistake is
derived.

Lemma 1 Consider a GP trained on samples ~y =
[y1, . . . , yt] which are drawn from p(y | x) at input locations
X = [x1, . . . , xt], with E[y | x] = f(x); if the predictive
variance of the GP at x′ ∈ X is

σ2(x′) ≤ σ2
tol =

2ω2ε2E
V 2
m log( 2

δ1
)

(7)

then a mistake at x′ is bounded in probability:
Pr {|µ̂(x′)− f(x′)| ≥ εE} ≤ δ1.

Proof sketch: The proof appears in Appendix B and
applies McDiarmid’s inequality to the general GP equations
to bounds the changes in predicted values for a given level of
predictive variance.

The inequality condition in lemma 1 is sufficient to ensure,
with high probability, that the mean of the GP is within εE of
a stationary function f(x). Conversely, for variances greater
than σ2

tol, no guarantees can be made that the GP will not
make a mistake. Next, Theorem 1 determines a maximum
number of samples a GP may make erroneous predictions on
before the condition on variance from Lemma 1 holds true
everywhere in U , and the GP returns accurate predictions, with
high probability. In order to account for error of sparsification,
Theorem 1 uses a finer tolerance of 1

4σ
2
tol (corresponding

to εE = εE
2 from (7)). The following theorem assumes

adversarial inputs.

Theorem 1 Consider a sparse GP model with linear in-
dependence test threshold εtol = εE

2Vm
, trained in the online

setting (with 〈xt, yt〉, t = 1... as described earlier) over a
compact domain U ⊂ Rd. Let the set of observations ~y over all
timepoints t be drawn from p(yt |xt), with E[yt |xt] = f(xt),
and xt drawn adversarially. Then, with probability 1− δ1, the
number of mistakes where:

|µ̂(xt)− f(xt)| ≥ εE (8)
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is at most

n =

(
4V 2

m

ε2E
log

(
2

δ1

))
Nc

(
U, r

(
ω2ε2E

4V 2
m log( 2

δ1
)

))
. (9)

Furthermore, the covering number grows polynomially with
1
εE

, Vm, 1
δ1

, but exponentially in the input dimension d for
the Gaussian Radial Basis Function (RBF) kernel.

Proof sketch: The proof breaks up the domain into
Voronoi regions around the covering set and determines an
upper bound on the number of points required reduce the vari-
ance everywhere in the region below 1

4σ
2
tol. In order to show

Nc

(
U, r

(
ω2ε2E

4V 2
m log( 2

δ1
)

))
grows polynomially in 1

εE
, Vm, and

1
δ1

, the proof bounds the number of Voronoi regions required
to cover the input domain by using volumetric arguments. This
is done by dividing the volume of the region into hypercubes
of volume less than or equal to that of the Voronoi regions, and
showing that the number of hypercubes grows polynomially
in 1

εE
, Vm, and 1

δ1
, although the number grows exponentially

in d. See the proof in Appendix C for further details.
In theory, the covering number grows exponentially with

the dimensionality of the space, which limits the practical
capabilities of using GPs without sparsification, but in practice
sparse GPs have been shown to work well in relatively high
dimensional spaces [31], [13]. Note that in the adversarial
setting, mistakes may occur at any time, but, Theorem 1 states
that the cumulative sum of those mistakes may not exceed
some value n.

C. Nonstationary Analysis

Building on the results for the stationary case, we now con-
sider the nonstationary case in which fi(x) changes between
phases. These changes in fi(x) must be inferred online, using
only sequential observations. Additional assumptions are made
here about the class of functions F that may be detected using
the nonstationary algorithm: realizability, separability, and
Gaussianity. It is assumed that each function fi ∈ F can be
exactly modeled by a GP given infinite data and the expected
approximation loss of using a GP model with finite data S is
approximately the same over all functions, functions are well
separated regionally, and the distributions pi(y |x) conditioned
on x are Gaussian, although possibly heteroskedastic. The first
and third assumptions are required to enforce some regularity
among the generating distributions, so that bounds on the
KL-divergence and LRT can be derived, while the second
assumption enforces that successive generating distributions
have different enough means to allow changepoint detection.

Assumption 1 (Realizability) The approximation error
between a GP model learned from a subset S of the data
obtained by the local sliding rule and the true generative
distribution does not change between phases by more than
εDS , where

sup
i,j
|D(pi‖GPS)−D(pj‖GPS)| ≤ εDS (10)

Assumption 2 (Separability) All functions f ∈ F differ
by some εF over at least one compact input region Ũ :

∀i, j : ∃Ũ ⊂ U s.t. |fi(x)− fj(x)| ≥ εF > εE (11)

Assumption 3 (Gaussianity) For all i,

pi(yi |x) ∼ N (fi(x), ω2
i (x))

with nonzero variance infx ω
2
i (x) ≥ ω2

min > 0 and Lipschitz
constant K associated with fi(x).

Assumption 3 is a regularity condition since the KL-
divergence may be ill-defined in the case of a deterministic
function.

The next lemma relates the absolute distance between
distribution means to a lower bound in the KL-divergence
between a GPw and the generating distribution. This is the
same as finding a lower bound on D(H1 |H0) from (6).

Lemma 2 Consider a GP, GPw, trained on pi(y | x) with
σ2
x(x) ≤ 1

4σ
2
tol, ∀x ∈ Ũ , and a set of distributions pj(y |x) ∈

P satisfying assumptions 1,2,3; then ∀x ∈ Ũ , then we can
ensure for a given probability 1− δd

D(pj(y |x)‖GPw)−D(pi(y |x)‖GPw) ≥ η (12)

where η equals

1

2

(
ω2 + σ2

tol − ω2
min

ω2 + σ2
tol

− ε2E
ω2

+ log

(
ω2
min

ω2

)
+

(εF − εE)
2

σ2
tol + ω2

)
(13)

Proof: The KL-divergence between two normal variables
[32] is given by

D(p0‖p1) =
1

2

(
σ2
0

σ2
1

− log
σ2
0

σ2
1

− 1 +
(µ0 − µ1)2

σ2
1

)
(14)

The minimum that the first two terms can equal 1 is when σ1 =
σ0; the maximum is when σ2

1 = ω2 +σ2
tol and σ0 = ω2

min. By
minimizing the variance related terms in D(p2(y | x)‖GPw),
maximizing the variance related terms in D(p1(y | x)‖GPw),
and bounding |µ̂w(x)−f1(x)| ≤ εE , w. p. 1−δd, (substituting
δd for δ1 in Lemma 1) where f1 is the mean of p1, (13) is
obtained.

The expected value of the LRT, from (6), is the KL-
divergence between the current distribution and the working
model, shifted by the model error, which is bounded from
assumption 1. In order to detect a changepoint, one can simply
determine the point in time where the mean of the time series
L(y) changes significantly. This equates to finding the number
of observations m such that the average of m LRT values will
be within some tolerance of the expected LRT value from
Lemma 2, and therefore above the LRT threshold for declaring
a changepoint. Lemma 3 finds m allowing for some probability
of false alarm or failed CPD, δL, conditioned on Lemma 2
holding true.

Lemma 3 Consider a GP t−mw trained on
n1 >

8V 4
m

ω4η2 log
(

4
δL

)
samples from p1(y | x), x ∈ Ũ .

Consider a second GP trained from a set of m� n1 samples,
which are drawn from p2(y |x) from region Ũ , with property,
D(p2(y |x)‖GPw)−D(p1(y |x)‖GPw) ≥ η + εDS , ∀x ∈ Ũ .
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Then, if the window size, m, and n1 satisfy the inequalities
stated below, then w.p. 1− δd − δL, Lm(y)− Lss(y) ≥ η,

m ≥
8V 4
m

ω4 log
(

4
δL

)
n1

η2n1 − 8V 4
m

ω4 log
(

4
δL

) (15)

For large n1

m ≥ 8V 4
m

ω4η2
log

(
4

δL

)
. (16)

Furthermore, if these window size conditions are met, Algo-
rithm 2 will detect a changepoint w.p. 1− δd − δL.

Proof: Since a delay m is used, the observations used in
the LRT are not included in the models GPw or GPS , making
the LRT values independent of each other. Furthermore, since
the output domain is bounded, the LRT values L(y) are
bounded. These conditions are sufficient to use Hoeffding’s
inequality to bound the variation of the average of the LRT
values from their expected value, the KL-divergence. To pro-
ceed, the maximal range of the LRT is bounded, and is given
by L(yi) = 1

2

(
log

σ2
w(xi)+ω

2

σ2
s(xi)+ω

2 +
(

(yi−µ̂w)2

σ2
w(xi)+ω2 − (yi−µ̂s)2

σ2
s(xi)+ω

2

))
,

where the subscript w and s refer to the working GP model
and GP model based on subset S. The variance is not affected
by yi so the first term is a constant. The last two terms are
bounded by the V 2

m/ω
2 each, and so the maximal range of each

L(yi) is ci =
2V 2
m

ω2 . Therefore, using Hoeffding’s Inequality,
one can bound the distance of the averages Lm, Lss from
their respective expected values, |L(·)(y) − (D(pi‖GPw) −
D(pi‖GPS))| ≤ ε(·) w. p. 1− δL/2, for (·) ∈ {m, ss}.

Given n1 and δL, the accuracy of the current GP, εw, can
be determined and the required number of samples m to drive
εS ≤ η−εw can be solved for through algebraic manipulation.
The total probability of (15) not holding true is obtained by
the union bound of probability of failure of (12) not holding
true, δd, and the probability, δL, of Lm(y)− Lss(y) ≥ η not
holding true. This yields a final probability of 1− δd− δL.

Lemma 3 states that if the generating function switches
such that the working model GP t−mw now predicts erroneously
in some region Ũ , then a set of observations built from the
new distribution of size m will detect the change with high
probability. A delay of m is used, so that the LRT values
Lt are independent of each other. If the observations at times
t−m to t were used in the models GPw and GPS , then the
LRT values would be correlated and Hoeffding’s Inequality
could not be applied. However, in practice, these correlations
tend to be be quite small, and so a delay is not required.
Lemma 3 considers only predictions in regions, and so now
Theorem uses Lemma 3 to bound the number of errorenous
predictions across a domain before GP-NBC either 1) detects
a changepoint or 2) predicts the new function accurately in
all regions, as is the case when the two mean functions are
similar in certain regions or if the GP had no data points in a
region (and so the GP mean can change).

For the next theorem, consider a KL-divergence change
threshold η associated through (13) with an εF strictly smaller
than εE , εF < εE . Define UE = {x ∈ U s.t. |fi(x)−fj(x)| >
εE}, and UF = {x ∈ U s.t. |fi(x) − fj(x)| > εF } as the

regions where the mean functions differ by at least εE and
εF , respectively. The next theorem bounds the total number
of mistakes that GP-NBC can make per phase. It accomplishes
this by adding the number of mistakes a GP can make due
to high predictive variance, 1

4σ
2
tol, and adding the maximum

number of mistakes that the GP can make before detecting
a changepoint, with high probability. It uses the covering
number, Lipschitz constant K, probability of (12) not holding,
δd, (Lemma 2), and probability of Lm(y) − Lss(y) < η not
holding, δL (Lemma 3).

Theorem 2 Consider GPw built on samples from the gen-
erating distribution pi(y | x). Assume that at some time
instant t, there is a changepoint and the generating distribution
switches to pj(y |x) satisfying assumptions 1,2,3. Consider a
local sliding window Sd(x) with d ≤ 1

K (εE − εF ) and Lm(s)
considering the last m LRTs performed within distance d of xi.
After m LRT calculations within the region of x, Algorithm
2 will detect a changepoint in that region w. p. 1− δd− δL or,
after a sufficient number of mistakes (see below) predict fj(x)
accurately in this region until the next changepoint. The total
number of mistakes by Algorithm 2 per phase is bounded by

n+ (2m− 1)Nc (UE , r(d)) , (17)

w. p. 1− δd − δL.

Proof: Let σ2
t (x) denote the predictive variance of the GP

at a point x in the input domain at time t. Note, the predictive
variance in a region decreases as points are added to a GP.
There are three types of regions, or conditions, under which
a mistake may be made after a changepoint, 1) the GP mean
differs from fj(x) by at least εE , and the variance of the GP
is low, σ2

t (x) ≤ 1
4σ

2
tol, 2) the GP mean and fj(x) differ by

at least εE and the variance is high σ2
t (x) > 1

4σ
2
tol, and 3)

the mean functions may not differ by more than εE , but the
variance is high σ2

t (x) > 1
4σ

2
tol, and so we cannot say with

certainty that no mistake has been made. We have from Lemma
1 combined with Theorem 1 that the number of mistakes that
can be made before σ2

t (x) ≤ 1
4σ

2
tol everywhere is n. That is,

Theorem 1 states that the maximum number of mistakes is
in the stationary case is n and its proof links to Lemma 1 to
show mistakes only occur when there is high variance. After
n mistakes have been made, the variance everywhere is low,
and so no more errors may occur in types of regions 2) and
3).

After the variance has reduced everywhere, the domain can
be divided into the region in which the GP makes an error
UE , and its complement, where the GP prediction is accurate.
The adversary may choose xt from UE , but after the adversary
chooses m− 1 observations from each region of the covering
set, the next observation will yield m samples in a sliding
window Sd(x), by the Pigeon Hole Principle. At this point, the
GP variance is below 1

4σ
2
tol, and the GP prediction and mean

function differ by at least εE , satisfying the requirements of
Lemma 3. Lemma 3 then guarantees that a changepoint will
be detected w.p. 1− δd − δL. Accounting for m mistakes per
region due to the delay, we have that 2m−1 mistakes may be
made per region. Combining these mistakes with the number
of mistakes possible due to high variance, n, we have that
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the total number of mistakes per changepoint is n + (2m −
1)Nc(UE , d), w. p. 1− δd − δL.
Note that in the above result, we enforce εF < εE , since,
without it, points may be sampled arbitrarily close on either
side of the boundary of the region UE , and the nonstationary
shift will not be detected.

V. EXPERIMENTS

The following empirically compares GP-NBC to sev-
eral state-of-the-art techniques on simulated and real-world
datasets. GP-NBC is used as described earlier, except that
the joint likelihood of the last m points is used when calcu-
lating likelihoods in Algorithm 2, rather than the likelihood
of single points. This approach, which is more difficult to
analyze theoretically, seems to have empirical benefits. The
competing algorithms are: GP-CPD [10], the Infinite Mixture
of Gaussian Process Experts (DP-GP) [18], and a MCMC
- sampling based Chinese Restaurant Process (MCMC-CRP)
algorithm [19] which, unlike DP-GP, samples new change-
point configurations, rather than sampling over individual data
points. We also compare to a naı̈ve implementation of GP-
regression with a forgetting factor, GP-Forget. All experiments
are run on a Macintosh Pro with 2.3 GHz Intel Core i7
processor and 8 GB RAM. The results demonstrate that GP-
NBC achieves a similar or better classification and regression
error compared to the batch algorithms, even though it is
online. The ability of GP-NBC to sequentially process data
and its demonstrated computational efficiency makes GP-NBC
a feasible algorithm for real-time implementation on resource
constrained platforms, such as Unmanned Aerial Vehicles with
limited computational power. GP-NBC also requires several
orders of magnitude less calculation time compared to the
batch algorithms and GP-CPD. This section uses two synthetic
examples and two real domains to compare performance across
the algorithms. In the last domain, GP-NBC augments DP-
GP by using the models learned by DP-GP as a set of prior
models. We show that GP-NBC’s ability to detect and learn
new clusters as opposed to only using the prior models, leads
to a substantial improvement.

A. Synthetic Datasets

The first experiment uses two very similar functions in order
to test subtle change points: f1(x) = x2− 1

2 , and f2(x) = 1
2x

2

over the domain x ∈ [−1, 1]. Observations are corrupted with
white Gaussian noise, y = fi(x)+ν, where ν ∼ N (0, 0.22) is
Gaussian white measurement noise, and x are drawn i.i.d. from
a uniform distribution. Figure 1 shows these two functions
plotted together. In the second experiment, the functions are
well separated, f1(x) = x2, and f2(x) = −x2 + 2, with x
drawn i.i.d. Changepoint detection becomes much easier, but
this experiment demonstrates a situation in which using a naı̈ve
sliding window approach would lead to significant regression
errors. For both datasets, the generating function switches from
f1 to f2 at some time τ drawn uniformly from (75,125),
and switches back to f1 at some τ drawn uniformly from
(175,225). The run ends at t = 400. GP-NBC parameters were
set to window threshold θ = 1, detection parameter η = 0.5,
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Fig. 1. f1 (lower curve) and f2 for the first experiment.

roll-back parameter R = 5, and |S| = 10. Parameters for the
other algorithms were chosen by grid search optimizing over
mean absolute regression error.

Table I compares 75 runs of each algorithm on both
experiments. For both experiments, GP-NBC has the best
performance in terms of average prediction error and iden-
tifying the correct number of clusters, and also achieves this
with a runtime one to two orders of magnitude faster than
the batch methods. When MCMC-CRP and DP-GP correctly
identify the changepoints, they achieve the minimum error,
however, they often converge to local optima and misidentify
the changepoints, leading to much higher error. Since GP-NBC
can reuse models, it outperforms GP-CPD in terms of predic-
tion error, and also takes approximately 30 times less time to
run. Lastly, GP-Forget has good prediction performance for
the first example. However, the low error is an artifact of the
functions being very close. In the second example, aliasing
due to the sliding window results in extremely large errors for
GP-Forget while GP-NBC performs equally well in both cases.
Results are statistically significant: GP-NB and the closest
competitor, GP-CPD, are seperated by 4 standard deviations
in both experiments in prediction error.

Figure 2 compares GP-NBC on example 1 over a grid of
parameters from η ∈ [0.1, 1.6] and m ∈ [3, 40]. For η ≥ 2, the
changepoint does not trigger a detection, and for η ≤ 0.1, false
positives occur. For reasonable values of η ≈ 0.5, m ∈ [3, 30]
results in similar performance. These results demonstrate that
GP-NBC is fairly robust to parameter selection.

B. Robot Interaction

The next experiment highlights the ability of GP-NBC to
identify multiple models in a real data set and leverage these
for improving prediction. In this experiment, a iRobot Create,
named GPUC-1, is driven manually while a second Create,
named GPUC-2 responds to GPUC-1’s movements in a variety
of ways: 1) attempting to encircle GPUC-1 clockwise or 2)
counterclockwise, 3) attempting to follow GPUC-1, or 4)
tracking a point 1m behind GPUC-1. An overhead VICON
motion tracking system measures the position and orientation
of the Creates at 5Hz, and the velocities are estimated using
a fixed point smoother. Every 200 seconds, GPUC-2 elects
a different, random behavior, possibly reusing a previously
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TABLE I
ERRORS, CLUSTERS AND RUNTIMES ON SYNTHETIC DATA

Experiment 1 Experiment 2
Mean Abs. Error Max Error No. Clusters Mean Abs. Error Max Error No. Clusters Runtime (s)

GP-NBC 0.0484±0.0050 0.0624 2.00±0 0.0436±0.0050 0.0662 2.0±0 3.16
GP-CPD 0.0679±0.0074 0.0848 – 0.0591±0.0044 0.0674 – 108.4

DPGP 0.0802±0.0167 0.1109 3.066±0.47 0.0755±0.0156 0.1104 4.38±0.70 217.5
MCMC-CRP 0.0647±0.0469 0.1369 1.88±0.49 0.0403±0.0156 0.0835 3.8±1.61 158.6

GP-Forget 0.0685±0.0055 0.0843 – 0.1556±0.022 0.2032 – 0.71

Fig. 2. Heat map of the Mean Abs Error (MAE) for various parameter
settings for GP-NBC. Green corresponds to better MAE than the optimal
parameter settings of GP-CPD, black to equivalent performance, and red to
worse performance.

exhibitied behavior as well. The difference in the (x, y)
position between GPUC-1 and GPUC-2, and the heading of
GPUC-1 is used as the input to the algorithms, and the velocity
of GPUC-2 is the output. Figure 3 shows GP-NBC robustly
identifying changepoints in GPUC-2’s behavior as well as
reclassifying previously seen behaviors. In this experiment,
R = 20 yielded a good model reidentification without negative
transfer. The GP-NBC algorithm took 2.9min to run and had
a mean error of 0.0661; GP-CPD took 6.8h and had mean
error 0.0785. GP-NBC outperforms GP-CPD since it is able
to reuse previous models. After 6 hours, we stopped MCMC-
CRP and DP-GP. GP-NBC outperformed GP-CPD in terms of
regression error as well as taking two orders of magnitude less
time.

C. Pedestrian Behavior Classification

In the final experiment, we demonstrate the ability of GP-
NBC to utilize prior models while simultaneously detecting
anomalous (new) functions. The setting we consider is mod-
eling pedestrian behaviors, i.e. typical trajectory patterns, at
an intersection and predicting the position of the pedestrian
some time in the future. This experiment is modeled after
work by [8], which considers pedestrian intent, or goals. In this
setup, the algorithm may be given a set of observed behaviors,
or trajectory patterns, but during testing, may observe a new
behavior or observe a human changing behavior patterns. This

Fig. 3. GP-NBC detects changepoints as well as reclassifying old models
of robot interaction dataset.

has many applications to pedestrian avoidance in autonomous
driving.

In this experiment, a pedestrian walks along one of four
trajectories at an indoor intersection, as seen in Figure 4.
The pedestrian position is measured using a LIDAR sensor
placed in front of the intersection. For more experimental setup
details, please refer to [33] or Chapter 5 and 6 of [34]. The
algorithm is trained on three of the four behaviors (all but the
teal trajectories) in batch using DP-GP. The training data can
be seen in the top right subfigure of Figure 4. In the testing
phase, a pedestrian may follow one of the three previously
observed trajectories, or may follow a new trajectory, as seen
in the lower left subfigure of Figure 4. After testing, GP-NBC
correctly identifies a change in behavior and reclassifies the
new trajectory pattern. The output of GP-NBC after the testing
phase is seen in the lower right subfigure of 4.

The experiment has five trajectories, with approximately 600
samples per trajectory. The input is the pedestrian location
and velocity, and the output is the velocity at the next time
step. Figure 4 shows that GP-NBC correctly identifies when
a pedestrian deviates from a behavior learned in the training
phase and reclassifies the anomalous behavior as the fourth
model.

GP-NBC is compared with DP-GP using the one-timestemp
ahead and ten-timestemp ahead predictions of the pedestrian’s
future location. Prediction error is computed as the root mean
square (RMS) difference between the true position and mean
predicted position, where the 10-step ahead prediction utilizes
both the GP mean and variance for propagation [35]. The
prediction error, averaged over all trajectories and time, was
similar for both algorithms for trajectories within the three
training clusters (mean difference of 10.25% and 2.47% for
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Fig. 4. Left: Test data. Top Right: Training data. Bottom Right: Output of
GP-NBC on test data. GP-NBC detects the new behavior and successfully
reclassifies it.

one and ten timesteps ahead), however, for the previously
unseen behavior, GP-NBC reduced the error by 27% and 44%
for the one and ten timestep ahead predictions.

VI. CONCLUSIONS

We presented a computationally efficient algorithm, GP-
NBC, for GP regression in the presence of changepoints.
Unlike previous attempts to model changepoints using GPs,
GP-NBC requires orders of magnitude less computation and
so is fast enough to be used in real-time decision making
applications. We derived polynomial (in relevant quantities
including the covering number of the input space) sample
complexity bounds on the number of inaccurate predictions by
GP-NBC. Although the bounds are conservative, such bounds
are not shared by competing algorithms considered in this pa-
per. These results advance the state-of-the-art in non-stationary
predictive modeling and enable fast online clustering for online
decision making and learning architectures.

APPENDIX A
PROOF OF EQUATION 6

The expected value of the log LRT test is given with
respect to the true distribution p(y | H1), Ep(y|H1)[LRT(y)],
however the log LRT is taken with respect to the model of the
distribution Ĥ1 and the null hypothesis H0.

Proof:

E[LRT(y)] =

∫
p(y|H1)

p(y | H1) log
p(y | Ĥ1)

p(y | H0)

=

∫
p(y|H1)

p(y | H1) log
p(y | Ĥ1)

p(y | H1)

+

∫
p(y|H1)

p(y | H1) log
p(y | H1)

p(y | H0)

=D(H1‖H0)−D(H1‖Ĥ1)

APPENDIX B
PROOF OF THE LEMMA 1

Proof: McDiarmid’s Inequality states that the probability
of a multivariate function of random variables deviating from
its expected value is bounded as:

Pr{|f(θ1, . . . , θn)− E[f(θ1, . . . , θn)]| ≥ ε} ≤ δ (18)

δ = 2exp
(
− 2ε2∑

i c
2
i

)
(19)

where ci = sup f(θ1, . . . , θi, . . . , θn)− f(θ1, . . . , θ̂i, . . . , θn).
That is, different values of θi can affect the output
f(θ1, . . . , θn) by no more than ci. McDiarmid’s Inequality
becomes Hoeffding’s Inequality if the function is a simple
mean. We will now use McDiarmid’s Inequality to bound the
amount of change caused by adding a new datapoint to the
GP.

Consider the GP mean equation

µ(X) = K(X,X)(K(X,X) + ω2I)−1~y (20)

where y ∈ [0, Vm] and Var(y) ≤ V 2
m. K(X,X) is symmetric

and positive semi-definite, so its eigenvectors are orthonormal
to each other and all of its eigenvalues are nonnegative. It
can be shown that K(X,X) and (K(X,X) +ω2)−1 have the
same eigenvectors. Performing eigendecomposition,

µ(X) = QΛQTQ(Λ + ω2I)−1QT~y (21)

µ(X) = QΛ(Λ + ω2I)−1QT~y (22)

Consider performing prediction only at the first input location
x1 by pre-multiplying using a unit coordinate vector e1 =
[1, 0, . . . , 0]T .

µ(x1) = eT1QΛ(Λ + ω2I)−1QT~y (23)

This is just a weighted sum of the observations y, with weights
given by

α = eT1QΛ(Λ + ω2I)−1QT (24)

It follows that
∑
i c

2
i = ‖α‖22V 2

m. Then,

‖α‖22 = eT1QΛ(Λ + ω2I)−1QTQ(Λ + ω2I)−1ΛQT e1 (25)

‖α‖22 = q1Λ(Λ + ω2I)−1(Λ + ω2I)−1ΛqT1 (26)

where q1 = [Q11 . . . Q1n] is the first row of Q. Therefore,

‖α‖22 =
∑
i

q21i

(
λi

λi + ω2

)2

(27)

However, by evaluating (24), the weight α1 which corresponds
to (x1, y1) is given by

α1 =
∑
i

q21i
λi

λi + ω2
. (28)

Since every term in (28) is greater than every respective term
in the sum of (27), it follows that,

‖α‖22 ≤ α1 (29)

In order to finish the proof, an upper bound α1 is derived.
Note that for a Gaussian likelihood (that is assuming the
measurement noise is Gaussian), the GP mean prediction
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µ(x1) returns a numerical value is equivalent to that of the
MAP estimate µMAP (x1) of a linear Gaussian measurement
model with a Gaussian prior (see e.g. page 10 of [1]). The
MAP estimate is given by:

µMAP (x1) =
σ2(x1)

ω2 + σ2(x1)
y1 +

ω2

σ2(x1) + ω2
µ0(x1) (30)

In this case, the prior mean µ0(x1), and variance σ2(x1) are
equivalent to the GP mean and variance before including the
new observation 〈x1, y1〉, and the new observation has weight:

α1 =
σ2(x1)

ω2 + σ2(x1)
≤ σ2(x1)

ω2
(31)

We can now apply McDiarmid’s inequality with f =
µ(y1...yn|x1...xn), that is we apply the inequality to a
function representing the mean of a GP trained on points
〈x1, y1〉...〈xn, yn〉 with the x values fixed. Therefore, the θ
values from McDiarmid are each observation yi and we are
considering the change in the GP if a different observation
ŷj was observed at a fixed xj . Note the application is on
a conditional distribution so the fixed x values need not
be independent, but the y values are independent, making
the application of McDiarmid’s inequality valid. With that
replacement, and the bound α1 derived above, McDiarmid’s
Inequality states that if

1

σ2(x1)
=

V 2
m

2ω2ε2E
log(

2

δ1
) (32)

then the prediction is within εE of the expected value of the
GP prediction with probability 1− δ1. This result proves that
the estimate of the GP concentrates around its expected value
with high probability. Since GPs are consistent estimators [1],
it follows that the expected value of the GP is the expected
value of the distribution f(x), and from that it follows that, if
(32) holds, then the estimate of the GP is within εE of f(x).

APPENDIX C
PROOF OF THEOREM 1

Proof: The proof begins by quantifying how many sam-
ples are needed in a given region before, with high probability,
the GP will become accurate. This quantity upper bounds the
number of mistakes that can be made in that region.

If the maximum error due to sparsification is εE
2 and the

error due to uncertainty (variance in the GP) is also εE
2 w.p.

1− δ1, it follows, the total possible error is εE , w. p. 1− δ1.
The associated maximum error due to sparsification of using
[13] is εtolVm and so εtol is set to εtol ≤ εE

2Vm
. Plugging in εE

2

into Lemma 1 yields a required variance of σ2(x) ≤ 1
4σ

2
tol,

∀x ∈ U . Note that while that lemma proved the probability of
a mistake was low in any given region, we will apply it over
a finite set of regions ci ∈ Nc(U, r(ν)), where ν = 1

8σ
2
tol =

ω2ε2E
4V 2
m log( 2

δ1
)

for short hand.
The proof begins by performing a Voronoi partition of

the domain U into Voronoi cells around the minimal set C
corresponding to the covering number Nc (U, r (ν)). Using
properties of the GP covariance equation, an upper limit will

be derived that relates the number of observations in a Voronoi
cell and the maximum variance of any point within the cell.
The Voronoi partition is defined as a collection of disjoint
subsets in the space U . The Voronoi cell Ri associated with
point xi ∈ C is the set of all points that are closer to xi than
any other point xj ∈ C, j 6= i, according to some distance
metric. In this proof, Euclidean distance is used.

For all points x in the same Voronoi region as point x′ ∈ C,
k(x′, x′) − k(x′, x)TK(x, x)−1k(x′, x) ≤ ν, by definition
of the equivalent distance map. The correlation coefficients
between two points is ρ = k(x′, x). Using the equivalent
distance map, ν is related to ρ as ν = 1−ρ2. Using Bayes law,
it can be shown that given a point x′ with prior uncertainty
σ2
0 = 1 and m measurements at another location x with

correlation coefficient ρ, the posterior variance is given by
σ2 = 1− mρ2

m+ω2 . Therefore, at the center, ci, of the volume in
a Voronoi cell, a lower bound on the reduction of the variance
can be found as

σ2(ci) ≤
mν + ω2

m+ ω2
≤ mν + ω2

m
(33)

In order to find the maximum number of points m required
to drive the variance down at the center of the region,
mν+ω2

m , below the bound required to ensure δ1 probability
of a mistake, 1

4σ
2
tol, we solve the following inequality for m:

mν+ω2

m ≤ 1
4σ

2
tol. This yields m =

(
4V 2
m

ε2E
log
(

2
δ1

))
points

drive the variance at ci below 1
4σ

2
tol. Therefore, the total

number of points that can be sampled anywhere in U before
driving the variance below 1

4σ
2
tol everywhere is equal to the

sum of points m over all regions, C: n =
∑
ci
m. This quantity

is described as n in the theorem statement. From above, we
have that after n mistakes, with probability 1− δ1:

|µ̂(xt)− f(xt)| < εE , (34)

which completes the sample complexity result.
It is now proven that Nc(U, r(ν)) grows polynomially with

1
εE

, Vm, and 1
δ1

for the RBF kernel. The covering number
Nc(U, r(ν)) can be bounded loosely by creating a hyper-
parallelopiped which contains the entire state space U , with
dimensions of length l1, l2, . . . , ld, where d is the dimension
of the space. The covering number is upper bounded loosely
by dividing the volume of the hyper-parallelopiped by the
volume of hyper-cubes of dimensional length r (ν). Since the
volume of each hyper-cube is strictly less than the volume of
each Voronoi region, it follows that it the number of hyper-
cubes required to fill the volume of the hyper-parallelopiped
is strictly greater than the number of Voronoi regions, i.e. the
covering number. By determining a bound on the rate at which
the number of hyper-cubes required to fill the volume grows
as a function of relevant parameters, this determines a loose
upper bound on the rate at which the covering number grows.

Nc (U, r (ν)) =
l1l2 . . . ld

r (ν)
d

(35)

For the RBF kernel, k(x, x′) = exp(−‖x−x
′‖2

2θ2 ), the equivalent
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distance map is given by

r (ν) = θ

(
log

(
1

1− ν

)) 1
2

. (36)

1
r(ν)d

grows polynomially with 1
νd

. It follows Nc (U, r (ν)) ∼

O
(
fp
(
V 2
m,

1
ε2E
, log

(
1
δ1

)))
where fp is some polynomially

bounded function of degree p ∝ d.
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