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Abstract This work considers the problems of learning and planning in Markovian
environments with constant observation and reward delays. We provide a hardness result for
the general planning problem and positive results for several special cases with deterministic
or otherwise constrained dynamics. We present an algorithm, Model Based Simulation, for
planning in such environments and use model-based reinforcement learning to extend this
approach to the learning setting in both finite and continuous environments. Empirical com-
parisons show this algorithm holds significant advantages over others for decision making in
delayed-observation environments.

Keywords Reinforcement learning · Delayed feedback ·Markov decision processes

1 Introduction

In reinforcement learning (RL) [25] models, an agent’s observations of its environment are
almost universally assumed to be immediately available. However, as tasks and environments
grow more complex, this assumption often falters. In such situations, the time it takes for an
agent to receive an observation of its current environment could better be spent performing
actions. Examples of this phenomena abound in the real world and continue to grow with
our increased technological ability. For example, the Mars Rover program has tremendously
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broadened the theater of engagement available to roboticists, but direct control of these
agents from Earth is limited by the vast communication latency. Delayed observations are
also a challenge for agents that receive observations through terrestrial networks [1], such as
the Internet or a multi-agent sensor network. Even solo agents that do advanced processing
of observations (such as image processing) will experience delay between observing the
environment, and the opportunity for acting based on this information. Such delay is not
limited to a single timestep, especially when processing may occur in a pipeline of parallel
processors. These scenarios involving delayed feedback have generated interest within the
academic community, leading to the inclusion of a delayed version of the “Mountain Car”
environment in the First Annual Reinforcement Learning Competition.1

One might be tempted to sidestep this problem by simply increasing the length of a
“timestep” to synchronize an agent’s actions with its delayed observations, but even when
this approach is possible (in domains involving momentum, for example, it is not), the best
possible policy for such a “wait agent” is often suboptimal—the agent can do better by
acting before receiving the most recent observation. This paper considers practical solutions
for dealing with constant observation and reward delays.

Prior work in the area of delayed-observation environments dates back over thirty years [7]
and several important theoretical results have been developed, including the insight that action
and observation delays are two sides of the same coin [13] and that planning can be performed
for both finite- and infinite-horizon delayed Markov Decision Processes (MDPs) or Partially
Observable MDPs (POMDPs) using algorithms for their undelayed counterparts in much lar-
ger state spaces constructed using the last observation and the actions that followed [3,4]. We
cover this and several other approaches for learning and planning in delayed environments in
Sect. 3. We then show that such augmented approaches can lead to an exponential state-space
blowup and provide a hardness result for the planning problem in general delayed MDPs.

In light of these results, we develop algorithms for planning and learning in four practically
motivated special cases of Markovian (if not for the delay) environments: finite and conti-
nuous environments with deterministic transitions, “mildly stochastic” finite environments,
and continuous environments with bounded noise and smooth value functions. We provide
loss bounds for our planning algorithm (Model Based Simulation) in these settings and show
how to extend this approach to the learning setting using a model-based approach. In conti-
nuous state environments, this extension to the learning setting includes a new model-based
reinforcement-learning algorithm (Model Parameter Approximation). In Sect. 5, we present
empirical studies of learning agents in discrete and continuous delayed environments that
demonstrate the advantages of our new techniques. These experiments include a study of the
degradation of our planning algorithm with increased non-determinism in the environment
dynamics. We assume throughout this work that the delay value is constant and provided to
the planner or learner at initialization. Possible methods for relaxing both of these assump-
tions are briefly treated in Sect. 6, though we have found most delay values can be easily
determined or derived before an agent’s task begins.

2 Definitions

A finite discounted Markov Decision Process (MDP) [20] is defined as a 5-tuple 〈S,A,P,R,γ 〉,
where S is a set of states, A is a set of actions, and P is a mapping: S × A × S �→ [0, 1]
indicating the probability of the given action taking the agent from state s ∈ S to state s′ ∈ S.

1 http://rlai.cs.ualberta.ca/RLAI/rlc.html.
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R is a mapping: S �→ �, which governs the reward an agent receives in state s (similar
results to those in this paper hold for R : S × A �→ � or if the range of the reward function
is a distribution over reward values), and γ ∈ (0, 1) is the discount factor. Without loss of
generality, we assume throughout this work that the reward function is bounded between 0
and some constant Rmax. A deterministic Markov policy, π : S �→ A, maps states to actions.
We refer to such policies as memoryless, as they depend only on the current state. The value
function V π (s) represents the expected cumulative sum of discounted reward and satisfies
the Bellman equation: V π (s) = R(s)+γ

∑
s′ P(s, π(s), s′)V π (s′). Every finite MDP has an

optimal policy π∗(s) = argmaxπ V π (s) and a unique optimal value function V ∗(s). Given
an MDP, techniques exist for determining V ∗(s) and π∗(s) in time polynomial in the size of
the MDP [20].

In this work, we will also consider continuous MDPs where S ⊆ �n and A may also be
continuous (A ⊆ �m). Computing value functions in this case often requires approximation
methods, an issue we treat in Sects. 3.6 and 4.2.

We define a constant-delay MDP (CDMDP) as a 6-tuple 〈S, A, P, R, γ, k〉, where k is a
non-negative integer indicating the number of timesteps between an agent occupying a state
and receiving its feedback (the state observation and reward). When k = 0, the CDMDP
becomes a regular MDP; otherwise we assume that k is bounded by a polynomial function
of the size of the underlying MDP and the agent observes its initial state in response to each
of its first k actions. This assumption is pragmatically grounded in that one would not expect
an agent in a delayed environment to act before making at least a starting observation.

Since the current state is not revealed at the time an action is taken (when k > 0), one may
think of a CDMDP policy as a mapping from previous state observations and actions (that is,
histories) to actions. It is known that an optimal CDMDP policy can be determined using the
so-called information state [4], denoted Ik ∈ S × Ak , which consists of the last observation
and the following k actions. In light of this fact, we formally define a CDMDP policy as
π : (S × Ak) �→ A. The CDMDP planning problem is defined as: given a CDMDP, initial
state I 0

k , and a reward threshold θ , determine whether a policy exists that achieves an expected
discounted reward (from the initial state) of at least θ . We note that the rewards counted do
not include those observed on the first k steps, as these rewards are determined completely
by Ik and are outside the control of the agent. Finding the optimal policy in a CDMDP can
be quite difficult—the state-of-the-art technique is to construct a new “augmented” MDP
with states Ik as described above. This technique is expounded upon in Sect. 3.3. In the
CDMDP learning problem, an agent deployed in a delayed-feedback environment knowing
only S, A, γ , and k is tasked with finding an optimal policy for the environment online. This
problem has received little attention and we hope that the basic theoretical and empirical
studies that follow motivate research in this area.

The positive results of this paper pertain to the following special cases for the underlying
(undelayed) Markovian dynamics:

I Deterministic finite: The undelayed MDP is finite and deterministic; formally, |S| <∞
and ∀s∃s′P(s, a, s′) = 1.

II Deterministic continuous: Same as Case I except S and A are continuous.
III Mildly stochastic finite: The undelayed MDP is finite and there is some δ ≥ 0 s.t.
∀s∃s′P(s, a, s′) ≥ 1− δ. Case I is a degenerate case where δ = 0.

IV Bounded-noise continuous: The underlying MDP is continuous, and transitions are
governed by st+1 = T (st , at ) + wt , where T is a deterministic transition function:
S× A �→ S, and wt is bounded noise: ‖wt‖∞ ≤ � for some � ≥ 0. We further assume
that the CDMDP’s optimal value function is Lipschitz-continuous when the action
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sequences for two Ik’s coincide; that is,
∣
∣V ∗(s, a1, . . . , ak)− V ∗(s′, a1, . . . , ak)

∣
∣ ≤

CV
∥
∥s − s′

∥
∥ for some constant CV > 0. This property holds (for example) when the

dynamics of the underlying MDP are smooth. We note that this case covers a wide class
of nontrivial and important dynamical systems, including those with linear transitions
and bounded white noise.

3 Strategies for dealing with observation delays

In this section, we cover several algorithms for learning and planning in delayed environ-
ments. Among those covered is the augmented MDP formalism espoused in prior works
[13,4] for planning in delayed observation settings. We also cover a less burdensome stra-
tegy using eligibility traces, specifically Sarsa(λ) [21], which has been used in prior work to
obtain memoryless policies in Partially Observable MDPs (POMDPs) [16]. We give a brief
overview of the theoretical connections between the CDMDP setting and several popular
representations, including factored MDPs and POMDPs. Finally, we introduce a new method
for planning that can be used in the special cases of delayed environments covered above
and that overcomes the exponential growth in the state space of augmented MDPs and has
theoretical and empirical advantages over the often suboptimal Sarsa(λ).

3.1 Solution 1: The “wait” agent

The first solution we consider is the wait agent, which “waits” for k steps, until the current
observation comes through, and then acts using the optimal action in the undelayed MDP.
More formally, this approach corresponds to a CDMDP policy of π(Ik) = π∗(s) if Ik =
(s,∅k), and ∅ otherwise. Here, ∅ is the “wait” action. While this approach may seem naive,
in practice it is probably one of the most common, especially in environments where time is
not particularly of the essence. Unfortunately, policies derived from this strategy will not, in
general, provide satisfactory solutions to the CDMDP planning problem. Instead, the agent’s
resulting policy will likely be suboptimal, as it is essentially losing potential reward on every
“wait” step. Furthermore, some environments, such as Mountain Car, where the agent is rarely
at a standstill, will not provide a natural “wait” action, rendering this solution inapplicable.
Still, when appropriate, the “wait” strategy provides the most cautious, and in limited cases
(where a single misstep could be catastrophic and the agent has no failsafe mechanisms) the
only practical solution.

3.2 Solution 2: Memoryless policies

Another intuitive planning approach is to just treat the CDMDP as an MDP and use a
memoryless policy based on a policy (possibly the optimal one) for the undelayed MDP. That
is, π(Ik) = π ′(s) if Ik = (s, a1, . . . , ak), where π ′ is a policy over S. In some environments,
this simple solution can produce reasonable policies, especially if the delay is relatively small
compared to the magnitude of the state transitions. For the CDMDP learning problem, sear-
ching for the best policy that ignores delay is intimately connected to the search for good
memoryless policies in POMDPs. One known technique that has shown empirical success in
the latter theater, without incurring an undue computational burden, is the use of eligibility
traces [16], particularly in the online value-function-learning algorithm Sarsa(λ), which is an
online model-free learning algorithm. At each timestep, having just reached state st , received
reward rt , and chosen action at , Sarsa(λ) performs the following operations, with Q(s, a)
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being the state/action value function (V (s) = maxa Q(s, a)) and α as the learning rate:

e(st−1, at−1)← 1

δ← rt + γ Q(st , at )− Q(st−1, at−1)

for all s ∈ S and a ∈ A

Q(s, a)← Q(s, a)+ αδe(s, a)

e(s, a)← γ λe(s, a)

An action is then chosen based on the exploration policy and the process repeats. Using
λ > 0 “blurs” together temporally proximate states and can mitigate the effect of partial
observability (in our case, delayed observations). Intuitively, in the delayed setting, eligibi-
lity traces tie the value of a state more closely to states that appear soon after it, thus the
effects of delay are dampened because the value of the observed (but delayed) state is more
heavily dependent on the true (but unobserved) current state. As such, we include Sarsa(λ)

in our empirical study (see Sect. 5) of the CDMDP Learning Problem. We further explore
the connection between CDMDPs and POMDPs in Sect. 3.4.

3.3 Solution 3: The augmented approach

The traditional method for modeling MDPs with constant delay is the augmented approach
[4], which involves explicitly constructing an MDP equivalent to the original CDMDP in
the much larger state space S × Ak . The formal construction of such an augmented MDP is
covered in previous work [13], but we briefly recount it here:

The construction takes a CDMDP C = 〈S, A, P, R, γ, k〉 and produces a regular MDP
M = 〈Ik, A, P ′, R′, γ 〉. The new state space, Ik = S× Ak , contains information states in the
form of (s, a1, . . . , ak) for s ∈ S and a j ∈ A. The new transition probabilities and reward
function can be defined accordingly: for Ik = (s, a1, . . . , ak),

P ′(Ik, a, I ′k) =
{

P(s, a0, s′), if I ′k = (s′, a2, . . . , ak, a)

0, otherwise

R′(Ik) = R(s).

We note that prior results [13] have shown that a variant of this construction can be
performed in the presence of action delays, even if the observation, action, and reward delays
have different values. Once the augmented MDP has been built, one can use any of the standard
MDP planning algorithms to determine V ∗(Ik) for Ik ∈ S× Ak . The corresponding optimal
policy is known to be an optimal policy for the CDMDP [3]. While the augmented approach
is sound and complete, in practice it presents several difficulties due to the exponential
growth of the state-space. First, this expansion renders traditional MDP planning algorithms
intractable for all but the smallest values of k. In Sect. 4.1, we show that the exponential state-
space growth is unavoidable in general, but in Sect. 3.5, we describe an approach that averts
this computational burden and provides optimal or near-optimal policies in the special cases
from Sect. 2. Furthermore, extending the augmented approach to the learning setting naively
could lead to an exponential sampling requirement as the algorithm attempts to experience
all state-actions in S × Ak × A. In Sect. 4.3, we outline a more efficient way to learn the
augmented MDP with a polynomial number of samples. However, we first mention a few
more impractical solutions that suffer from similar state-space expansions as the augmented
approach.
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3.4 Other intractable methods

As mentioned in the discussion of eligibility traces, finding optimal policies in CDMDPs is
intimately connected to determining optimal policies in POMDPs. The connection emerges
because the states of the augmented MDP representing a CDMDP can be mapped di-
rectly to what in POMDPs are termed “belief states”, that is probability distributions over
the underlying states. Unfortunately, constructing a traditional POMDP transition function
(where transitions are Markovian given the belief state) is problematic because belief states
do not necessarily encode the last k actions (because two augmented states can map to the
same belief state, losing the ability to recover the action k steps ago). One could create new
“states” that encode the actions as well, but the result is exactly the augmented model. Thus,
using POMDP planning techniques [11] in the CDMDP planning setting gains no benefit, in
terms of worst-case analysis, over the augmented approach.

Representing the CDMDP as a factored MDP with one factor for each of the k previous
actions, as well as factors for the most recent observation and current action, is another repre-
sentational trick that is of no avail in the worst case. At first, this may seem surprising because
the probability of the next observed state (from k − 1 steps prior) can be easily predicted
given this model. Unfortunately, the problem of choosing the optimal next action given the
current factor values (the CDMDP planning problem), is no easier in this representation, as
the different permutations of values assigned to the factors each correspond to a specific state
in the augmented MDP.

Finally, we mention an interesting connection between the CDMDP setting with a “wait”
action and POMDPs with observation actions. Intuitively, in the delayed setting, simply
being able to sit still for a number of timesteps provides the agent with information as a
more contemporary observation is uncovered on each step. In such a setting, an optimal
agent would need to decide how many steps to “wait” in every situation until it reached
a belief state where it could act with high certainty on the distribution of outcomes. More
generally, this can be seen as a variant of the only-costly-observable MDP (OCOMDP) [8],
which has been studied in a limited form in the learning setting. On the planning side, this
representation requires reasoning about when to observe, a problem that quickly devolves
into POMDP planning, and in practice algorithms in this setting yield only approximate
solutions [27].

All the strategies discussed in this section lead to worst-case complexities at least com-
parable to the augmented approach. Furthermore, analyses of the loss in precision caused
by using approximate solutions with these representations will often require environmental
assumptions beyond the scope of this work. The focus of this paper is on practical solutions
for environments with delayed dynamics under reasonable real-world assumptions. Hence,
we do not further discuss these generally intractable solutions, comparing simply against the
augmented approach.

3.5 Solution 4: A new approach, Model Based Simulation (MBS)

We now introduce a planning algorithm, Model Based Simulation (MBS), designed for the
restricted CDMDP cases from Sect. 2. The theoretical difficulties of extending this approach
to general CDMDPs are discussed in Sect. 4. The intuition behind MBS is that, in a deter-
ministic or benignly stochastic environment, given Ik , one can use P to “simulate” the most
likely single-step outcomes of the last k actions, starting from the last observed state, thus
determining, or at least closely approximating, the current state of the agent. In the deter-
ministic cases, this prediction is straightforward. In the other two cases, (mildly stochastic
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Algorithm 1 Model Based Simulation

1: Input: A CDMDP M = 〈S, A, P, R, γ, k〉, and Ik = (s, a1, a2, . . . , ak ) ∈ S × Ak .
2: Output: The optimal action a∗ = π∗(Ik ).
3: Construct a regular MDP M̄ = 〈S, A, P̄, R, γ 〉 where P̄(s, a, s′) = 1 for the most likely

(when S is finite) or expected (when S is continuous) outcome of a in s.
4: Find the optimal value function V̄ ∗ and an optimal policy π̄∗ for M̄ .
5: Compute the current (but unobserved) state s̄ by applying action sequence (a1, . . . , ak )

to s according to P̄ .
6: Return π̄∗(s̄).

and bounded noise) the algorithm will use the most likely or expected outcome, respectively,
to simulate each step. Notice that when k > 1 the outcome of this sequence of simulations
may not be the most likely current state given Ik , but we shall see that in the restricted cases
we consider, the error in this approximation is bounded. The MBS algorithm appears in
Algorithm 1.2

Extending MBS to the learning setting is fairly straightforward in the context of finite
CDMDPs (Cases I and III). One needs only to employ a model-based RL algorithm such as
R-max [6] to learn the parameters (P and R) of the underlying no-delay MDP. However, to
extend MBS to continuous CDMDPs, simply discretizing the environment is not sufficient
because this approach can easily turn deterministic (Case II) or slightly perturbed (Case
IV) state transitions into far less benign dynamics, making the action simulations unsui-
table. Instead, we require a method that trains a model of the transitions in the continuous
space itself, but still plans in the discretized space (in order to make valid comparisons
against the policies of the other finite-space algorithms). The next section defines such an
algorithm.

Algorithm 2 Model parameter approximation
1: Input:
2: A collection of N sample instances X = {(si , ai , ri , s′i ) | i = 1, 2, . . . , N }
3: S, A, γ and Rmax from a continuous MDP and a set of discrete states Ŝ
4: Function approximators TA and RA
5: The current continuous observation s
6: Output: The action to be taken from s.
7: Train TA and RA using X .
8: Construct discrete MDP M̂ = 〈Ŝ, A, P̂, R̂, γ 〉; for any s̄ ∈ Ŝ and a ∈ A:
9: if we have enough samples in X then
10: use maximum-likelihood estimates
11: else if TA and RA have high confidence then
12: generate an artificial sample set X ′ using TA and RA , build model using X ∪ X ′
13: else
14: P̂(s̄, a, s̄) = 1 and R̂(s̄, a) = Rmax.
15: end if
16: Find the optimal value function V̂ ∗ and an optimal policy π̂∗ for M̂ .
17: ŝ = Discretize(s)
18: Return π̂∗(ŝ).

2 Note: for continuous MDPs, some steps may require approximation, see Sect. 4.2.
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3.6 Model parameter approximation

Model Parameter Approximation, or MPA, is a model-based RL algorithm designed for
MDPs with bounded, continuous state and action spaces. It combines techniques from two
other RL algorithms. First, MPA is closely related to Lazy Learning [2], which uses lo-
cally weighted regression to build approximations of the MDP dynamics and then plans
in a discretized version of the MDP, using the trained regressor as a generative model
in order to “sample” the transition and reward functions in areas of the discretized MDP
where it lacks “real” experience. MPA performs a similar construction, but it can use any
function approximator to model both the relative transition and reward functions. MPA
also utilizes a model-based exploration strategy (not provided in Lazy Learning) based on
the R-max algorithm. Specifically, MPA tags state/action pairs as “known” or “unknown”
based on the amount of experience in each discrete state (in practice this threshold may be
governed by the sampling requirements of the function approximators) and encouraging ex-
ploration of the unknown areas. As in Lazy Learning, because a discretized model is used,
the value-iteration operation will provably converge, though we cannot guarantee the values
will be identical to the true value function of the continuous MDP. The full MPA algorithm
is presented in Algorithm 2.

We emphasize that MPA is a model-based reinforcement-learning algorithm for no-delay
MDPs whose planning component is very similar to MBS without simulation. Therefore, we
can use MBS and MPA together in the continuous CDMDP learning setting with only a few
modifications. First, MPA’s instance set, X , needs to contain one-step transitions, so we need
to pair together the currently observed state and reward with the action from k steps ago before
adding them to X . Also, we perform MBS’s simulation before the discretization of the current
state using MPA’s transition function approximator, TA, to apply the action sequence (using
the expected one-step outcomes). We then discretize the outcome of that simulation and use
the appropriate action. This CDMDP learning algorithm, MBS + MPA, produces a “discreti-
zed” policy, valid for comparison against the other algorithms we will investigate in Sect. 5.
This comparability is one of the reasons MPA was chosen for testing with MBS over other sui-
table continuous model-based RL algorithms such as Kernel Based Prioritized Sweeping [10].

4 Theoretical analysis of delayed problems

In this section, we develop several theoretical properties of the CDMDP planning and learning
problems for CDMDPs as described in Sect. 2. Our treatment includes a hardness result in the
general case, positive results for the four special cases, and an efficient (in terms of sample
complexity) way to learn augmented MDPs.

4.1 Planning results I: the general case

The first two solutions from Sect. 3 have polynomial-time bounds in the planning setting as
they simply involve finding the optimal policy for the no-delay underlying MDP. However,
examples are easily constructed where these approaches fail to solve the CDMDP planning
problem correctly. Conversely, the expensive augmented approach represents a sound and
complete method for finding an optimal policy. Although in certain cases it is unnecessary to
fully expand the state space to S× Ak , Theorem 1 below shows that converting the CDMDP
representation to an equivalent regular MDP representation induces an exponential expansion
over the size of the compact CDMDP model in the worst case. The proof is provided in
Appendix A.
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Theorem 1 The smallest regular MDP M̄ = 〈S̄, A, P̄, R̄, γ 〉 induced by a finite CDMDP
M = 〈S, A, P, R, γ, k〉 has a lower bound of

∣
∣S̄

∣
∣ = �(|A|k).

The exponential increase in the number of states suggests that this approach is intractable
in general, and the next theorem establishes that it is unlikely the CDMDP planning problem
can be solved in polynomial time. The proof is presented in Appendix B.

Theorem 2 The general CDMDP planning problem is NP-Hard.

A more complicated reduction from 3-SAT shows this problem is indeed strongly
NP-Hard. We note that if P �=NP, then Theorem 1 would be a direct consequence of Theorem 2
since an MDP can be solved in time polynomial in the size of its representation. However,
Theorem 1 gives a stronger result, showing an exponential blowup in representation is una-
voidable when converting a CDMDP to an MDP, even if P = NP. The NP-Hardness result for
CDMDP planning motivates the search for constrained cases where one can take advantage
of special structure within the problem to avoid the worst case. We now provide theoretical
results concerning the four special cases previously defined.

4.2 Planning results II: special cases

The following results provide bounds on
∥
∥V̄ ∗ − V ∗

∥
∥∞, where V̄ ∗ is the value function for

π̄∗ computed by MBS in its deterministic approximation M̄ (c.f. Algorithm 1), and V ∗ is
the true CDMDP value function. These bounds are also accuracy bounds for answering the
CDMDP planning problem using M̄ instead of M and can be used to derive the actual online
performance bounds when using greedy policies w.r.t. V̄ ∗ compared to the optimal CDMDP
policy [22].

We begin with the finite-state cases, starting with the more general “mildly stochastic”
setting (Case III) where MBS will assume that the last k transitions have each had the most
likely one-step outcome.

Theorem 3 In Case III,
∥
∥V̄ ∗ − V ∗

∥
∥∞ ≤ γ δRmax

(1−γ )2 . In other words, MBS solves the CDMDP

planning problem for such CDMDPs with this accuracy in polynomial time.

Proof We first bound the error on the one-step Bellman backup of the deterministic
approximation. That is, we compare R(s) + γ maxa

∑
s′ P(s, a, s′)V ∗(s′) for arbitrary

state s versus a backup in the deterministic approximation, R(s) + γ maxa V ∗(T (s, a)),
where T (s, a) = arg maxs′ P(s, a, s′) is the most likely outcome of a taken in s. Define
a′ = argmaxa

∑
s′ P(s, a, s′)V ∗(s′) and a′′ = argmaxa V ∗(T (s, a)). On the one hand,

(

R(s)+ γ max
a

∑

s′
P(s, a, s′)V ∗(s′)

)

−
(

R(s)+ γ max
a

V ∗(T (s, a))
)

≥ γ
∑

s′
P(s, a′, s′)V ∗(s′)− γ V ∗(T (s, a′))
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= γ
∑

s′
P(s, a′, s′)

(
V ∗(s′)− V ∗(T (s, a′))

)

= γ
∑

s′ �=T (s,a′)
P(s, a′, s′)

(
V ∗(s′)− V ∗(T (s, a′))

)

≥ γ
∑

s′ �=T (s,a′)
P(s, a′, s′)

(

− Rmax

1− γ

)

≥ −γ δRmax

1− γ
,

where the last inequality is due to our assumption that
∑

s′ �=T (s,a′) P(s, a′, s′) ≤ δ. Similarly,
we can show that

(

R(s)+ γ max
a

∑

s′
P(s, a, s′)V ∗(s′)

)

−
(

R(s)+ γ max
a

V ∗(T (s, a))
)
≤ γ δRmax

1− γ
.

Therefore, we have
∣
∣
∣
∣
∣

(

R(s)+ γ max
a

∑

s′
P(s, a, s′)V ∗(s′)

)

−
(

R(s)+ γ max
a

V ∗(T (s, a))
)
∣
∣
∣
∣
∣
≤ γ δRmax

1− γ
.

By a well-known fact about MDP approximation solutions (e.g., [17]), the two value functions
differ by at most 1

1−γ
times the single-step Bellman backup difference:

∥
∥V̄ ∗ − V ∗

∥
∥∞ ≤

γ δRmax

(1− γ )2 .

Using MBS explicitly computes a value function for a deterministic approximation (Step 4
of MBS), which is subject to the bound above in relation to the true CDMDP value function.
Answering the CDMDP planning problem within this accuracy can then be done by approxi-
mating the current state s through simulation and comparing V̄ ∗(s) to the reward bound θ .
The major operation for MBS is the computation of V̄ ∗ for a deterministic MDP M̄ , which
can be done in O(S A + S3) [15]. ��

We note that, by definition, V̄ ∗ has taken the k-step prediction error into account; therefore,
Theorem 3 provides a bound (indirectly) for the performance of MBS when it has to predict
forward k steps using an inaccurate model. The bound above is only practically useful for
small values of δ, because larger values could cause M̄ to be a poor approximation of M . At
the opposite extreme, setting δ = 0, we arrive at the following result for Case I:

Corollary 1 In Case I, MBS solves the CDMDP planning problem exactly in polynomial
time.

In the continuous cases (II and IV), computing V̄ ∗ and its maximum, even in the undelayed
case, requires approximation (e.g. discretization [17] or interpolation [18]) that will introduce
an additional error, denoted ε, to V̄ ∗ as compared to V ∗. Computing V̄ ∗ will also require
some (possibly not polynomially bounded) time, T . In Case IV, we assume the magnitude of
the noise is bounded by � and the optimal CDMDP value function is Lipschitz continuous
with constant Cv , leading to the following result.

Theorem 4 In Case IV, assuming an approximation algorithm for computing V̄ ∗ within ε

accuracy in time T , MBS solves the CDMDP planning problem with accuracy 2γ Cv�
1−γ

+ ε in
time polynomial in the size of the input and T .
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Proof We establish an error bound on the one-step Bellman backup of the deterministic
approximation using the Lipschitz continuity condition. We have assumed there exists Cv > 0
such that for any I = (s, a1, a2, . . . , ak) and I ′ = (s′, a1, a2, . . . , ak), we have

∣
∣V ∗(s, a1, a2, . . . , ak)− V ∗(s′, a1, a2, . . . , ak)

∣
∣ ≤ Cv

∥
∥s − s′

∥
∥ .

The backup error βV is defined by:

βV (s, a1, a2, . . . , ak)

=
⎛

⎝R(s, a1)+ γ max
a

⎧
⎨

⎩

∫

S

p(s′ | s, a1)V ∗(s′, a2, . . . , ak, a)ds′
⎫
⎬

⎭

⎞

⎠

−
(

R(s, a1)+ γ max
a

{
V ∗(s0, a2, . . . , ak, a)

})

= γ max
a

⎧
⎨

⎩

∫

S

p(s′ | s, a1)V ∗(s′, a2, . . . , ak, a)ds′
⎫
⎬

⎭
− γ max

a

{
V ∗(s0, a2, . . . , ak, a)

}

where

s0 =
∫

S

p(s′ | s, a1)s
′ds′

is the expected next observation due to the transition from s by taking action a1. Let

a′ = arg max
a

∫

S

p(s′ | s, a1)V ∗(s′, a2, . . . , ak, a)ds′

and

a′′ = arg max
a

V ∗(s0, a2, . . . , ak, a).

We now show that |βV (s, a1, a2, . . . , ak)| ≤ 2γ Cv� for any s, a1, . . . , ak . By definitions of
a′ and a′′, we can rewrite βV (s, a1, a2, . . . , ak) as:

γ

∫

S

p(s′ | s, a1)V ∗(s′, a2, . . . , ak, a′)ds′ − γ V ∗(s0, a2, . . . , ak, a′′).

On the one hand,

βV (s, a1, a2, . . . , ak)

≥ γ

∫

S

p(s′ | s, a1)V ∗(s′, a2, . . . , ak, a′′)ds′ − γ V ∗(s0, a2, . . . , ak, a′′)

(∵ definition of a′)

≥ γ

∫

S

p(s′ | s, a1)
[
V ∗(s0, a2, . . . , ak, a′′)− 2Cv�

]
ds′ − γ V ∗(s0, a2, . . . , ak, a′′)

(∵ any s′ with p(s′ | s, a1) > 0 must be 2�-close to s0)

= −2γ Cv�.

Similarly, we can show that βV (s, a1, a2, . . . , ak) ≤ 2γ Cv�. Combining these two results,
we have |βV (s, a1, . . . , ak)| ≤ 2Cv�.
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From here, the proof of the Theorem continues along the lines of Theorem 3. The bound
on the error of the backup is extended to a bound on the error of the value function by
introducing a factor of 1

1−γ
:

∥
∥V̄ ∗ − V ∗

∥
∥∞ ≤

2γ Cv�

1− γ
.

All the operations in MBS remain polynomial as in Theorem 3, except for step 4, which
must be carried out by the approximation algorithm, introducing further error ε. Let Ṽ ∗ be
the approximate value function returned by the approximation algorithm. By assumption,∥
∥
∥V̄ ∗ − Ṽ ∗

∥
∥
∥∞ ≤ ε. Therefore,

∥
∥
∥Ṽ ∗ − V ∗

∥
∥
∥∞ ≤

∥
∥
∥Ṽ ∗ − V̄ ∗

∥
∥
∥∞ +

∥
∥V̄ ∗ − V ∗

∥
∥∞ ≤ ε + 2γ CV �

1− γ
.

��
Similarly to Case III, this bound is only of interest if � and ε are small. By setting � = 0,

we arrive at the following result that says planning in deterministic continuous CDMDPs is
the same as in their equivalent undelayed ones:

Corollary 2 In Case II, the MBS algorithm, using an approximation algorithm to compute
V̄ ∗ within ε accuracy in time T , can answer the CDMDP planning problem with accuracy
ε in time polynomial in the size of the input and T .

4.3 Efficiently learning an augmented MDP

A simplistic approach to the general CDMDP learning problem would be to apply standard
RL algorithms in the augmented MDP state space. We will refer to this strategy as naive
augmented learning. While theoretically sound, this tack requires gathering experience for
every possible Ik (an exponential sampling requirement). A preferred alternative is to instead
learn the one-step model from experience, then build the augmented model and use it to
plan in conjunction with an algorithm, like R-max [6], that facilitates exploration. While this
compact augmented learning still suffers in the worst case from the unavoidable exponential
burden of planning (Theorems 1 and 2), its sampling requirement is polynomially bounded.
Thus, compact augmented learning represents a practical (in terms of sample complexity)
extension of the augmented approach to the CDMDP learning setting. Theorem 5 below
makes this claim formal on finite MDPs.

Theorem 5 The compact learning approach, is PAC-MDP [23]. In particular, for any ε, δ >

0, the non-stationary policy of a compact learning agent is ε-optimal except in 3

Õ

(
|S|2 |A| R3

max

ε3(1− γ )6

)

time steps during the whole run of the algorithm, with probability at least 1− δ.

Proof (Sketch) The proof is essentially identical to the proof for R-max [12].4 To see why,
we first observe that the key lemmas in the proof, including the implicit-explore-or-exploit

3 Õ is similar to the big-O notation except that it ignores the logarithmic factors.
4 Although their proof is for undiscounted, finite-horizon RL algorithms, the same proof with minor changes
holds valid for the discounted, infinite-horizon case.
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lemma [12, Corollary 8.4.5] and the simulation lemma [12, Corollary 8.5.4], hold in the
augmented MDP. We can thus define known-state augmented MDPs as usual, and define pt

as the probability of reaching an unknown augmented state within

H = O

(
log Rmax

ε(1−γ )

1− γ

)

= Õ

(
1

1− γ

)

steps at time t . Consider two cases:

– When p is below a threshold p∗ = O
(

ε(1−γ )
Rmax

)
(we call this an exploitation step), the

implicit-explore-or-exploit lemma guarantees that the non-stationary policy at this time
step is ε-optimal.

– Otherwise, an unknown state will be reached within H steps with nontrivial probability
at least p∗ (we call this an exploration step), then Hoeffding’s inequality [9] can be used
to bound the total number of exploration steps with high probability [12, Lemma 8.5.2].
Observe that although the augmented MDP has exponentially many states (|Ik | = |S| ·
|A|k), it in fact has exactly the same set of parameters to learn as the underlying undelayed
MDP (c.f., Sect. 3.3); in other words, there are at most O

(
m |S|2 |A|) steps in which the

agent enters an unknown state, where m is the number of visits of a state–action pair
to make it known. Consequently, we have exactly the same bound of the number of
exploration steps as given in Lemma 8.5.2 of Kakade’s proof [12].

Putting all these together, a compact augmented learner using R-max employs a policy that
is ε-optimal except in at most

Õ

(
Hm |S|2 |A| Rmax

ε(1− γ )

)

= Õ

(
m |S|2 |A| Rmax

ε(1− γ )2

)

steps. Setting m = Õ
(

S
ε2(1−γ )4

)
suffices to estimate a model accurately enough so that the

value functions are ε-close to the true value function. Using this value of m, we have the
sample complexity bound of exploration as desired. ��

5 Empirical algorithm comparisons

To provide some concrete grounding to the theoretical observations, we now evaluate several
of the methods discussed in Sect. 3 in the learning setting for each of the four cases. Agents
were evaluated in episodic domains based on average cumulative reward over 200 episodes,
with a cap of 300 steps per episode. Starting states for each episode were randomly selected
but were consistent across different agents. All data points represent an average over 10 runs.
Several of the strategies proposed thus far were originally designed for the delayed planning
case, but we extended them to the learning setting in the following ways. The “wait agent”
approach was used in environments where a “wait” action was permissible using R-max5 in
the finite-state setting and with MPA for continuous environments. Several variants of the
memoryless-policy strategy were appraised, including model-based RL algorithms, R-max
and MPA, as well as Sarsa(0)6, Sarsa(.9), and “Batch” versions of Sarsa (B-Sarsa) that used

5 Unless otherwise noted, all variants of R-max used a “known state threshold” of m = 3 samples when
domains appeared stochastic to the learner.
6 Variants of Q(λ)-learning were also tried, yielding similar results to Sarsa(λ).
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experience replay [14] every 1000 steps. The batch variants were included to increase the
validity of comparisons to the model-based methods. The Sarsa learning rate was set to .3
(empirically tuned) and exploration in these cases was guided by optimistic initialization of
the value function along with an ε-greedy [25] approach for picking actions, with ε initia-
lized to .1 and decaying by a factor of .95 per episode. The learners using eligibility traces
used “replacing” traces (in conformance with the presentation in Sect. 3.2), which fared bet-
ter empirically then “accumulating traces”. In the continuous domains, we used the same
discretization scheme for all the memoryless learners and MBS + MPA. Due to the large
number of variations, only the best and worst of these “memoryless” approaches are plotted
for each environment. For the augmented approaches, we investigated both the naive and
compact augmented learners described in Sect. 4.3, with planning taking place in the aug-
mented MDPs using R-max. We also evaluated a naive augmented Sarsa(λ) learner in the
augmented MDP state-space. Unfortunately, the computational burden of planning caused by
the exponential state space expansion made these augmented approaches infeasible beyond
delays of k = 5. Finally, for MBS, we again used R-max or MPA, as appropriate. All the
variants of MPA (MPA, Wait + MPA, MBS + MPA) employed Locally Weighted Progression
Regression (LWPR) [26] to approximate the transition function, and an averager to approxi-
mate the reward function. An LWPR confidence of 85% was used to separate “known” and
“unknown” states.

5.1 Delayed W-maze I: a deterministic finite environment

We begin with a deterministic finite (Case I) domain, the “W-maze”, as depicted in Fig. 1
(left). The agent starts in a random cell and its goal is to escape the maze through the top
center square by executing the “up” action. All steps within the maze garner a reward of−1.
The environment is designed to thwart memoryless approaches, which have trouble finding
the right situation to begin going “up” and instead alternate between the extreme branches.

Figure 1 (right) shows the results of this experiment. The “wait” agent performs well in
this environment, but sub-optimally for k > 0. In contrast, MBS + R-max quickly achieves
optimality for all delay values. The best memoryless performer was B-Sarsa(.9), but its per-
formance drops well below the random agent at higher delays. The worst memoryless learner
was R-max, which fails to learn the transition function for k>0. The compact augmented
learner performs comparably to MBS + R-max, but the planning for this method becomes
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Fig. 1 Left: W-maze. Right: experimental results for deterministic W-maze
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Fig. 2 Two benchmark problems in our empirical studies [24]
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Fig. 3 Mountain Car Results, various strategies shown

intractable beyond a delay of k = 5. As expected, the naive augmented learners see a signi-
ficant performance drop-off as delay increases. Unlike the memoryless approaches, which
learn fast but can’t represent the optimal policy, these learners are too slow to learn from the
set of samples available to them.

5.2 Delayed Mountain Car: a case II environment

In a progression towards more realistic domains, we further investigated these algorithms in
a domain with deterministic continuous dynamics (Case II), a delayed version of “Mountain
Car” [25], which was an event in the First Annual Reinforcement Learning Competition.
This oft studied domain involves a car attempting to reach the top of a steep incline, as
pictured in Fig. 2 (left). In order for the car to reach its goal, it must build up momentum,
often by climbing the smaller slope to the left. The agent perceives the environment through
two continuous variables, representing the car’s location and velocity. The car has 3 actions
(forward, neutral, reverse) and rewards of−1 for all steps and 0 at the top of the hill. We set the
agents’ initial states randomly, but used the same seeds across learners. For the “memoryless”,
and “augmented” approaches, we continued to use the algorithms described in the previous
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Fig. 4 Results for memoryless learners in the Mountain Car environment

section and overlaid a 10× 10 (empirically tuned) grid for discretization. The “wait” agent
strategy was not applicable because this domain has momentum. MPA was implemented using
LWPR as previously described. The results are illustrated in Fig. 3. Again, the best performer
was MBS + MPA, which has the advantage of modeling continuous actions and efficiently
compensating for delay. However, for many delay values, Batch Sarsa(.9) performed almost
as well, because action effects in Mountain Car are quite small. By focusing on the results
of the memoryless learners (Fig. 4), we see the clear benefit of eligibility traces as both B-
Sarsa(.9) and Sarsa(.9) outperform B-Sarsa(0), Sarsa(0) and MPA (without MBS) when k>0.
The augmented learners again falter, due to their inefficient use of samples, rarely making it
to the top of the hill for k>2.

5.3 Delayed W-maze II: a stochastic finite environment

We also considered a mildly stochastic (Case III) version of W-maze, where actions succeed
with a probability of .7 and “slip” in one of the other three directions with probability .1
each. Because of the non-determinism, learners using R-max used a “known state threshold”
of m = 5 samples in this case. The results of this experiment are illustrated in Fig. 5. Despite
the non-determinism in the domain, MBS + R-max performed comparably to the compact
augmented learner and outperformed all of the other approaches. The memoryless approaches
all flounder with increasing delay, being outdone even by the naive augmented R-max and
“wait” learners. As in the deterministic case, the failure of the memoryless learners stems
from their inability to represent the optimal policy. Interestingly, the cautious “wait” learner
outperforms both the naive augmented and memoryless learners in this domain as it neither
tries to learn a complex model nor settles for suboptimal non-wait steps. But, the “wait” agent
is still no match for MBS + R-max, even in this stochastic domain.

5.4 Delayed Puddle World: a case IV environment

Finally, we investigated a Case IV environment, stochastic Puddle World [5] where action
outcomes were perturbed by bounded Gaussian noise. The 2D environment contains two
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Fig. 5 Experimental results for stochastic W-maze
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Fig. 6 Experimental results for stochastic Puddle World

puddles and a goal. A sample drawing of a puddle world appears in Fig. 2 (right). The
observables at each step are the agent’s X and Y coordinates (bounded in [0, 1]). The available
actions are movement in the four compass directions, each with an expected magnitude of
.05, but perturbed by Gaussian noise capped in magnitude by .01. Steps within the puddles
garner large negative rewards while all other steps yield−1. We set the initial states randomly,
though agents were not allowed to start in the puddles, and we again used the same seeds
across experiments. In each of the 10 runs, the puddles were randomly placed and sized. A
10 × 10 tiling was used for discretization. The batch learners used experience replay every
2500 steps because of noise effects. The results are reported in Fig. 6. MBS+MPA clearly
outperforms its memoryless counterparts, though eligibility traces help maintain performance
with increasing delay. As with Mountain Car, MBS +MPA outperforms some augmented
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Fig. 7 Effect of noise on the performance of MBS + R-max and the compact augmented learner in the stochastic
W-maze environment. While the performance of the latter is more consistent, it suffers from exponential time
complexity w.r.t. k. Delay is set to k = 5 to keep the augmented MDP planning tractable

learners at k = 0 because MPA’s function approximators quickly and accurately learn the
domain dynamics. The “wait” agent, which loiters in the puddles during learning, performs
poorly for large delays and is outperformed by the best memoryless learner, Batch-Sarsa(.9).
This domain dramatically exhibits the benefits of the compact augmented approach over the
naive ones as the latter learners dramatically falter with increased delay.

5.5 Decaying performance with noise

While the theoretical results we have presented provide worst case bounds on the performance
of MBS in stochastic environments, one may wonder about the empirical correlation bet-
ween non-determinism and algorithm performance. In an effort to better understand this
relationship, we performed experiments evaluating agents under different levels of stochas-
ticity, while keeping all the other parameters fixed. Stochastic W-maze and Puddle World
were chosen as our discrete and continuous domains, respectively. Although one anticipates
a performance drop-off in general as the stochasticity increases, our goal was to quantify the
loss solely from MBS’s approximation of transitions (the simulated steps). To this end, we
evaluated two algorithms. First, was MBS+R-max, which enjoys the fast learning of R-max
in the undelayed MDP and uses MBS approximation for fast planning. This was compared
to the compact augmented learner, which also enjoys the fast learning of R-max, but has to
construct the exponentially large (but more exact) augmented MDP for planning. Figures 7
and 8 illustrate the decaying performance of the two algorithms in stochastic W-maze and
Puddle World, respectively. In both environments, the delay is set to k = 5, as larger delays
become intractable for the compact augmented learner. As the graphs illustrate, increased
stochasticity is more detrimental to MBS+ R-max than to the compact augmented learner,
as MBS’s simulations become less accurate. However, considering MBS + R-max’s huge
computational and space advantage, the performance is still in an acceptable range.

6 Conclusions and future work

In this article, we evaluated algorithms for environments with constant observation and reward
delay. We showed the general CDMDP planning problem is NP-Hard, but planning can be
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Fig. 8 Effect of noise on the performance of MBS + R-max and the compact augmented learner in the
stochastic Puddle World environment. Delay is again set to k = 5

done in polynomial time in the deterministic finite setting, and we provided loss bounds on
efficient planning in three other settings. We introduced Model Based Simulation (MBS)
for planning in CDMDPs, and Model Parameter Approximation (MPA) to extend MBS
for learning in continuous environments. We also proposed a method that provably learns
a finite-state CDMDP efficiently, despite the exponential size of the learned model. We
conducted experiments that reinforced our claims, showing that augmented MDPs can be
learned efficiently, but are costly to store or plan with, and that MBS outperformed this
and other natural alternatives in several benchmark delayed MDPs, though heavily noisy
transitions can fell MBS.

Several open research topics in this area remain. In the learning setting, one could relax the
assumption that the delay is known. We have experimented with several methods for learning
delay, including techniques from the clustering literature. While these approaches seem to
work well in practice, theoretical results regarding such learning have not been produced.
A related problem is variable delay, or jitter, which is common when dealing with network
latency and has been studied in prior work on augmented MDPs [13]. Also, though we
covered two important stochastic special cases, there may be more conditions that facilitate
efficient planning. A related open question is whether an algorithm that exploits structure
within the belief space (for instance, if the number of reachable belief states from any start
state within k steps is small) could plan in time not influenced by the potential exponential
expansion. We note that MBS is an extreme case of such an algorithm, which considers only
|S| reachable belief states, all of them pure.

Acknowledgements This work was supported in part by NSF IIS award 0329153. We thank the First Annual
Reinforcement Learning Competition and Adam White.

A Appendix: Proof of Theorem 1

In an undelayed MDP, applying action a from state s produces a probability distribution over
the next states. It follows from the Markov assumption that in an MDP with |S| states, there can
be at most |S| distinct probability distributions over states after performing any possible action
sequence. We now describe a method which, given |A| and k, constructs a CDMDP with two
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states such that performing each action results in �(|A|k) different probability distributions
based on different k-step histories (s, a1, . . . , ak). It follows from this construction that any
regular MDP has to have �(|A|k) states to represent these probability distributions.

Let p(s′|�a, s) denote the probability of going to state s′ after applying action sequence �a
from state s. For any action i ∈ {1, . . . , |A|} in a two-state MDP, the corresponding transition
matrices Pi can be written as follows.

Pi =
(

xi 1− xi

yi 1− yi

)

, (1)

where xi = p(s1|i, s1) and yi = p(s1|i, s2). We can compute the probability distribution after
performing action sequence �a = (a1, a2, . . . , al) by multiplying their individual transition
matrix:

T�a = Pa1 Pa2 · · · Pal (2)

Define di = xi − yi . With trivial algebra one can show that for an action sequence
�a = (i, j) of length 2,

p(s1|�a, s1) = xi d j + y j

p(s1|�a, s2) = yi d j + y j .

This observation can be easily extended to multiple-step cases. For any action sequence
�a = (a1, a2, . . . , ak) with ai ∈ {1, . . . , |A|}

p(s1|�a, s1) = (((xa1 da2 + ya2)da3 + ya3) · · · )dak + yak

= xa1 da2 da3 · · · dak + ya2 da3 da4 · · · dak + · · · + yak .

We now construct a delayed MDP such that D = d1 = · · · = dk . Then,

p(s1|�a, s1) = xa1 Dk−1 + ya2 Dk−2 + ya3 Dk−3 · · · yak

p(s1|�a, s2) = ya1 Dk−1 + ya2 Dk−2 + ya3 Dk−3 · · · yak .

Let xi = (2i − 1)D and yi = 2(i − 1)D. This choice guarantees that we can generate
|A|k distinct coefficients for each of the probabilities above. In order to get uniqueness for
the polynomials, we set D = 1

2|A| . In fact, any D < 1
(2|A|−1)

guarantees that:

(SG)Di > (BG)

k−1∑

j=i+1

D j , ∀i ∈ [0..k − 2].

SG and BG are the smallest and biggest differences in the coefficients of the polynomials
respectively; that is, SG = min

∣
∣ci − c j

∣
∣ , i �= j and BG = max

∣
∣ci − c j

∣
∣ , i �= j , where

each c is a coefficient. The condition above is necessary and sufficient for uniqueness of
the polynomial given the uniqueness of the coefficients. In fact, with xi and yi defined as
above, p(s1|�a,si )

Dk is a well-formed representation in base 1
D . In this case, each of the 2(|A|k)

probabilities correspond to unique numbers in this representation. Therefore, any regular
MDP has to have �(|A|k) states to represent these distinct probability distributions. ��
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'0s '1s '1ks

'01s

'02s

'1||,0 Ss

'1,1ks

'2,1ks

'1||,1 Sks

'fs

Fig. 9 The induced MDP for the NP-hardness proof of CDMDP planning

B Appendix: Proof of Theorem 2

The proof is by reduction from the problem of planning in a finite-horizon unobservable
MDP (UMDP). Consider an arbitrary finite-horizon UMDP U = 〈S, A, P, R, k〉 where k
is the horizon, with an initial state s1 (a similar construction is possible when the initial
state s1 is not fixed but drawn from a distribution). Let n = |S|. We now create a CDMDP
C = 〈S′, A, P ′, R′, γ, k〉 where

∣
∣S′

∣
∣ = k + kn + 1. For ease of presentation, states in S′ are

grouped into three categories (c.f., Figure 9):

1. States s′1 through s′k
2. States s′ti for 1 ≤ t ≤ k and 1 ≤ i ≤ n
3. A final state, s′f .

The transitions and rewards for the three categories are as follows.
P ′(s′t , a, s′j ) = 1 if j = t + 1 and 0 otherwise, for 1 ≤ t ≤ k − 1.

P ′(s′k, a, s′11) = 1, else 0.7

R′(s′t , a) = 0 for 1 ≤ t ≤ k and a ∈ A.

P ′(s′ti , a, s′t+1, j ) = P(si , a, s j ) for 1 ≤ t ≤ k − 1, 1 ≤ i, j ≤ n, and a ∈ A.
P ′(s′ki , a, s′f ) = 1 for 1 ≤ i ≤ n and a ∈ A.

R′(s′ti , a) = R(si , a)/γ t+k−1 for 1 ≤ i ≤ n, 1 ≤ t ≤ k, and a ∈ A.

P ′(s′f , a, s′f ) = 1 for a ∈ A.
R′(s′f , a) = 0 for a ∈ A.

The initial state of the CDMDP for the planning problem is defined as I 0
k = (s′1, a1 · · · a1),

that is, the initial state s′1 followed by action a1 (arbitrary) k times.
Intuitively, the first set of k states are merely “dummy” states needed to define I 0

k . The
next kn states represent one of the UMDP states at a specific timestep t , and the rewards
for these states are scaled based on the timestep they represent in order to equate the value
functions for U and C . The final state is a sink state. Remembering that the first k rewards
are always zero, the value function for C can be written as:

V ∗(I 0
k ) = R(s1)+ γ max

a

∑

i

P ′(s′11, a, s′2i )V ∗(si ),

7 Note: if we had a stochastic initial state distribution, this would be a stochastic transition.

123



104 Auton Agent Multi-Agent Syst (2009) 18:83–105

where V ∗(si ) is the optimal value of state si in the UMDP U . Since P ′(s′11, a, s′2i ) =
P(s1, a, si ) we get

V ∗(I 0
k ) = R(s1)+ γ max

a

∑

i

P(s1, a, si )
R(si )

γ
+ · · ·

= R(s1)+max
a

∑

i

P(s1, a, si )R(si )+ · · ·,

which equals V ∗(s1), the optimal value function for U at the start state s1.
Since U is an arbitrary finite-horizon UMDP, answering the CDMDP planning problem for

C provides an answer for whether any policy from a given start state in a finite-horizon UMDP
can have a value of at least θ , which is known to be NP-Complete [19]. The construction is
polynomial as C is bounded in size by a polynomial function of the parameters of U . ��
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