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1. Full Proof of Lemma 1

Lemma 1 Consider a GP trained on samples ~y = [y1, . . . , yt] which are drawn from p(y | x) at input locations
X = [x1, . . . , xt], with E[y | x] = f(x) and Vm = ymax − ymin. If the predictive variance of the GP at xi ∈ X is

σ2(xi) ≤ σ2
tol =

2ω2
nε

2
1

V 2
m log( 2

δ1
)

(1)

then the prediction error at xi is bounded in probability: Pr {|µ(xi)− f(xi)| ≥ ε1} ≤ δ1.

Proof In order to prove that the GP estimate concentrates around the mean f(x). We first use McDiarmid’s
Inequality to show that if the variance at a point satisfies 1, then the estimate of the GP is concentrated around its
expected value with high probability. Secondly, since it is known that GPs are consistent estimators (Rasmussen
& Williams, 2006), it follows that the expected value of the GP is the expected value of the distribution f(x).

McDiarmid’s Inequality states that

Pr{|f(x1, . . . , xn)− E[f(x1, . . . , xn)]| ≤ ε} ≤ 2exp

(
− 2ε2∑

i c
2
i

)
= δ (2)

where ci = sup f(x1, . . . , xi, . . . , xn)−f(x1, . . . , x̂i, . . . , xn). I.e. replacing xi by some other value x̂i can result in
a change in the output f(x1, . . . , xn) no larger than ci. In the case of an average of the variables, McDiarmid’s
Inequality becomes Hoeffding’s Inequality. Consider the general GP regression equations

µ(X) = K(X,X)(K(X,X) + ω2
nI)−1y (3)

where y ∈ [0, Vm] and Var(y) ≤ V 2
m. K(X,X) is symmetric and positive semi-definite, so its eigenvectors

are orthonormal to eachother and all of its eigenvalues are nonnegative. It can be shown that K(X,X) and
(K(X,X) + ω2

n)−1 have the same eigenvectors. Performing eigendecomposition,

µ(X) = QΛQTQ(Λ + ω2
nI)−1QT~y (4)

µ(X) = QΛ(Λ + ω2
nI)−1QT~y (5)

Consider performing prediction only at the first input location x1 by premultiplying using a unit coordinate
vector e1 = [1, 0, . . . , 0]T .

µ(x1) = eT1 QΛ(Λ + ω2
nI)−1QT~y (6)

This is just a weighted sum of the observations y, with weights given by

α = eT1 QΛ(Λ + ω2
nI)−1QT (7)
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It follows that
∑
i c

2
i = ‖α‖22V 2

m. We have that

‖α‖22 = eT1 QΛ(Λ + ω2
nI)−1QTQ(Λ + ω2

nI)−1ΛQT e1 (8)

‖α‖22 = q1Λ(Λ + ω2
nI)−1(Λ + ω2

nI)−1ΛqT1 (9)

where q1 = [Q11 . . . Q1n] is the first row of Q. Therefore, we have

‖α‖22 =
∑
i

q2
1i

(
λi

λi + ω2

)2

(10)

However, by evaluating (7), we have that the weight α1 which corresponds to (x1, y1) is given by

α1 =
∑
i

q2
1i

λi
λi + ω2

. (11)

Since every term in (11) is greater than every respective term in the sum of (10), it follows that,

‖α‖22 ≤ α1 (12)

In order to finish the proof, we now upper bound α1. Consider that a GP prediction is equivalent to the MAP
estimate of a linear gaussian measurement model with a gaussian prior.

µMAP (x1) =
σ2

0(x1)

ω2 + σ2
0(x1)

y1 +
ω2

σ2
0(x1) + ω2

µ0(x1) (13)

In this case, the prior mean µ0(x1), and variance σ2
0(x1) are given by the GP estimate before including (x1, y1),

and the weight of the new observation is given by

α1 =
σ2

0(x1)

ω2 + σ2
0(x1)

≤ σ2(x1)

ω2
n

(14)

Using this bound on α1, we have from McDairmid’s Inequality that if

1

σ2(x1)
=

V 2
m

2ω2
nε

2
1

log(
2

δ
) (15)

then our prediction is within ε1 of the expected value of the GP prediction with probability 1−δ. This proves that
the estimate of the GP concentrates around its expected value with high probability. Since GPs are consistent
estimators (Rasmussen & Williams, 2006), it follows that the expected value of the GP is the expected value of
the distribution f(x). Therefore, it follows that if (15) holds, then the estimate of the GP is within ε1 of f(x).

1.1. Role of the Prior in Lemma 1

This section describes the affect of the GP prior on the KWIK learning result in Lemma 1.

Traditionally, the KWIK framework does not incorporate prior model information in a Bayesian manner, which
contrasts with the use of priors by a GP. While priors may improve early model performance, they may also slow
learning if the initial estimate is far from the actual value. In order to consider the effect of the prior on GP
inference, we examine the bias versus variance properties of the GP estimator for properties of the model. The
mean function of a GP is equivalent to the MAP estimate of a linear combination of Gaussian beliefs, given by,

µ̂ =
σ2

0

σ2 + σ2
0

f(y1, . . . , yn) +
σ2

σ2 + σ2
0

µ0 (16)

where µ0, σ2
0 are the prior mean and variance, respectively. f(·) is a function that maps the observations to

an estimate. In the single variable case, this corresponds to an average. In Lemma 1, this corresponds to the
function µ(x′) = f(x1, . . . , xn), which was analyzed. Therefore, the total error induced by using a GP is given
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by the sensitivity (variance) of f(·) to noise, which was analyzed in Lemma 1, and the error induced by having
a prior bias. Here, we show that this bias-error is small, and can be effectively ignored in the analysis.

The maximum error due to regularization is given by the upper bound on the second term

εpr =
σ2

σ2 + σ2
0

Vm (17)

Plugging in σtol from Lemma 1,

εpr =
ω2
nε

2
1Vm

ω2
nε

2
1 + 1

2V
2
m log( 2

δ1
)σ2

0

(18)

Defining r =
σ2
0

ω2
n

,

εpr =
Vm

1 + r
2ε21
V 2
m log( 2

δ1
)

(19)

Interestingly, the role of the prior decreases as Vm, 1
ε1

, and 1
δ increase. This is due to the fact that the variance

required to average out noise scales as V 2
m whereas the error induced by bias of the prior scales Vm. The effect of

the prior increases as the ratio r decreases, i.e. our initial variance is very low, or the measurement noise is high.
We argue that by increasing r, we can make the error due to regularization arbitrarily small without effecting
the reliability of our estimate. For example, by increasing σ2

0 arbitrarily large, we have,

µ̂ ≈ σ2
0

σ2 + σ2
0

f(y1, . . . , yn) (20)

Effectively, by making the prior variance arbitrarily large, we have turned the GP into a function approximator
that does not rely on any prior information. Therefore the guarantees still hold from the previous section. By
creating a large prior variance, one might be concerned that the rate at which σ2 decays will be slowed down.
However, consider that the covariance at a point after a single observation is given by σ2 = (σ−2

0 +ω−2)−1 ≈ ω2.
Thus, for any σ2

0 >> ω2, the effect of the prior variance does not matter much. Since we can set r arbitrarily
large by scaling the kernel function, we can therefore scale εpr to be arbitrarily small. Therefore, we neglect the
role of the prior in the analysis.

2. Theorem 1: Proof of the variance decrease rate in a Voronoi region

An εt-volume around a point x̄ is defined as the set of all points which satisfy the following distance metric
as {εt − Vol : x ∈ S | k(x̄, x̄) − k(x̄, x)TK(x, x)−1k(x̄, x)}. Define the correlation coefficients between two
points as ρ = k(xi, xj). Using bayes law, it can be shown that given a point x̄ with prior uncertainty σ2

0 = 1
and m measurements at another location xi with correlation coefficient ρ, the posterior variance is given by

σ2
n = 1− nρ2

n+ω2 . Using the linear independence test, we relate εt to ρ as εt = 1− ρ2. Therefore, we have that in
an εt-volume, the slowest that the variance can reduce at the center of the volume z̄ is given by,

σ2
n ≤

nεt + ω2

n+ ω2
≤ nεt + ω2

n
(21)

The εt-volume around a point x̄ is identical to the voronoi region around a point in the covering set. εt ≤ 1
2σ

2
tol

by the definition of the covering number.

3. Theorem 1: Proof that NU(r) grows polynomially

Theorem 1 Furthermore, NU (r(εtol)) grows polynomially with 1
ε1

and Vm for the Radial Basis Function (RBF)
kernel.

Proof We can bound the covering number NU (r( 1
2σ

2
tol)) loosely by creating a hyper-parallelopiped, which coun-

tains the entire state space X, with dimensions l1, l2, . . . , ld, where d is the dimension of the space. The covering
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number is then loosely bounded by dividing the volume of the hyper-parallelopiped by hyper-cubes of dimension
r( 1

2σ
2
tol), which is a strictly smaller than the true volume of each voronoi region. Plugging in,

NU (r(
1

2
σ2
tol)) =

l1l2 . . . ld

r( 1
2σ

2
tol)

d
(22)

In the case of the RBF kernel k(x, x′) = exp(−‖x−x
′‖2

2θ ), the equivalent distance map is given by

r(εtol) = θ

(
log

(
1

1− εtol

)) 1
2

. (23)

1
r(εtol)

grows polynomially with 1
εtol

. Additionally, 1
εtol

= 1
2σ

2
tol =

V 2
m log( 2

δ )
ω2ε21

, so it follows, NU (r( 1
2σ

2
tol)) ∼

O
(
fp(V 2

m,
1
ε21
, log

(
1
δ

)
)
)

, where fp(·) is some function bounded by a polynomial of order p.

4. Proof of Lemma 2

Lemma 2 The total number of successful updates (overwrites) during any execution of DGPQ is

κ = |A|NS
(
ε(1− γ)

3LQ

)(
3Rmin

(1− γ)2ε
+ 1

)
(24)

Proof We begin with the single state/action example from Section 5 and then expand on this result. There,
given an estimate Q̂i, the corresponding difference in measurements is (1− γ)Q̂i. The stopping criterion for the
algorithm is given by

(1− γ)Q̂i ≤ 2ε1 (25)

The error associated with stopping the algorithm at this stage as opposed to running the algorithm to infinity
is given by the infinite sum of the geometric series,

ε = ε1 +

∞∑
i=0

(2ε1)γi = ε1 +
2ε1

1− γ
(26)

The maximum number of updates, η, required to reach this stopping point is given by the maximum distance
the estimate Q̂ can move, 1, divided by the minimum swap distance ε1

η =
1

ε1
(27)

η =
3− γ
ε(1− γ)

(28)

η ≤ 3

ε(1− γ)
(29)

Similarly, in a multi-state domain, the number of overwrites required to bring one point down from Q̂(s, a) = Rmax
1−γ

to Q̂(s, a) = ε is given by η = 3Rmax
(1−γ)2ε . Manipulating (26), ε1 = 1

3ε(1 − γ) satisfies a final error of ε at

(s, a). Consider the worst case analysis in which Q∗(s, a) = Rmax
1−γ , ∀(s, a) ∈ U . Due to the representation of

Q̂(s, a), there is also an error induced by optimism away from the basis vector location. This error is given

by ε∆ = LQd((s, a), (si, ai)). If the furthest point in the basis vector set is at most r = ε(1−γ)
3LQ

(given by the

definition of the covering set), then ε∆ = ε1. The worst case analysis is then that the algorithm updates Q̂, η

times multiplied by the covering number Nc( ε(1−γ)
3LQ

) in order to bring |Q̂(s, a)−Q∗(s, a)| ≤ ε+ε1 everywhere. The

algorithm then can update Q̂ at most once more per covering volume before |Q̂(s, a)−Q∗(s, a)| ≤ ε everywhere,

leading to a final number of Q̂ updates of κ = |A|NS( ε(1−γ)
3LQ

)
(

3Rmax
(1−γ)2ε + 1

)



Supplementary Material

5. Proof of Lemma 3

Lemma 3 The total number of attempted updates (overwrites) during any execution of GPQ is

|A|NS
(
ε(1−γ)

3LQ

)
(1 + κ).

Proof After an overwrite has occurred and the GP s are reinitialized, the variance can fall below σ2
tol a maximum

of |A|NS
(
ε(1−γ)

3LQ

)
times. There are a maximum of κ successful updates. After κ updates, the variance can fall

below σ2
tol a maximum of |A|NS

(
ε(1−γ)

3LQ

)
times before the variance has fallen below σ2

tol everywhere.

6. Proof of Lemma 5

Lemma 4 During execution of DGPQ, Q∗(s, a) ≤ Qt(s, a) + 2ε1
1−γ holds for all 〈s, a〉 with probability δ

3 .

Proof Define BQ(s, a) = E[r(s, a) + γmaxa′ Q(s′, a′)] to be the exact Bellman update of a value function,
and B̃Q(s, a) to be the approximate Bellman operator using the update of Q̂ from Algorithm 1. From Lemma
1, setting σ2

tol as per (1), and performing an overwrite as per Algorithm 1, we have that for every update,

BQ(s, a) ≤ B̃Q(s, a) w.p. 1− 1

3|A|NS
(
ε(1−γ)
3LQ

)
(1+κ)

δ. This is due to the fact that |GPa.mean(st)−BQ(s, a)| ≤ ε1

w.p. 1− 1

3|A|NS
(
ε(1−γ)
3LQ

)
(1+κ)

δ, and that we add a bonus term of ε1 when we perform an update.

From Lemma 3.10 of (Pazis & Parr, 2013), if Q̂(s, a) is initialized optimistically, and the Bellman operator is
only applied if the difference between the Bellman update and the current value of the Q-function differs by more
than 2ε1, i.e. BQt(s, a) ≤ Qt(s, a) + 2ε1, then we have that our estimate of the Q-function is always optimistic
as Q∗(s, a) ≤ Qt(s, a) + 2ε1

1−γ , ∀t.

If BQ(s, a) ≤ B̃Q(s, a) holds for all updates, then it follows that our approximation is optimistic at the update
locations: Q∗(s, a) ≤ Q̂t(s, a) + 2ε1

1−γ . For any other location (s, a), Equation 9 adds a bonus of LQ × d, where
LQ is the lipschitz constant, and d is the distance. Since Q∗ cannot grow faster than the lipschitz constant,
this bonus ensures that the estimate of Q∗ remains optimistic away from known locations. The probability that
DGPQ does not remain optimistic can be conservatively estimated as the union bound of the probability of any
update failing, which is given by δ/3.

7. Proof of Lemma 6

Lemma 5 If event A2 occurs, then if an unsuccessful update occurs at time t and GPa.Var(s) < σ2
tol at time

t+ 1 then 〈s, a〉 ∈ Kt+1.

Proof Suppose the conditions in the lemma hold but 〈s, a〉 /∈ Kt+1. Since the update was unsuccessful we know
that 〈s, a〉 /∈ Kt as well. However, because A2 occurred and the update was unsuccessful, we know there was
some k1 < t where 〈s, a〉 ∈ Kk1 . But this would mean that a successful update occurred between k1 and t, which
means GPa would have been reset, so GPa.Var(s) ≥ σ2

tol, which is a contradiction.

8. Proof of Lemma 7

Lemma 6 If event A2 occurs and Q̂t(s, a) ≥ Q∗(s, a)− 2ε1
1−γ holds for all t and 〈s, a〉 then the number of timesteps

ζ where 〈st, at〉 /∈ Kt is at most

ζ = m|A|NS
(
ε(1− γ)

3LQ

)(
3Rmax

(1− γ)2ε
+ 1

)
(30)

where

m =

(
36R2

min

(1− γ)4ε2
log

(
6

δ
|A|NS

(
ε(1− γ)

3LQ

)
(1 + κ)

))
|A|NS

(
ε(1− γ)

3LQ

)
(31)
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Proof The number of timesteps ζ can be decomposed into two parts, the maximum number of success-

ful updates κ = |A|NS
(
ε(1−γ)

3LQ

)(
3Rmax
(1−γ)2ε + 1

)
, and the maximum number of times (after an update has

occurred) that the agent will encounted a state with high variance, i.e. the state is unknown, m =(
36R2

min

(1−γ)4ε2 log
(

6
δ |A|NS

(
ε(1−γ)

3LQ

)
(1 + κ)

))
|A|NS

(
ε(1−γ)

3LQ

)
. κ is taken from Lemma 2. m is obtained by plug-

ging in δ1 = δ

3|A|NS
(
ε(1−γ)
3LQ

)
(1+κ)

, ε1 = 1
2ε(1− γ) into Equation 3 of Theorem 1.

There are two cases for 〈st, at〉 /∈ Kt, which by Lemma 5 means that GPat .V ar(st) > σ2
tol before the GP update.

First, if GPat .V ar(s) < σ2
tol after the GP update, then an attempted update to Q̂ will occur at time t, and

must be successful because the state has an erroneous value (since it is not in Kt) and event A2 has occurred.
Therefore, this case can only happen κ times by Lemma 2.

Second, if the variance GPat .Var(st) > σ2
tol after the GP update, then the next attempted update must occur

within m encounters of unknown states, since by then whichever state is /∈ Kt must reach convergence in the
GP. This is because each encounter of an unknown state/action when event A2 occurs is also an encounter of a
state/action with GPat .Var(st) > σ2

tol.
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