
Planning and Learning in Environments with

Delayed Feedback

Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman

Rutgers, The State University of New Jersey
Department of Computing Science

110 Frelinghuysen Rd., Piscataway, NJ 08854
{thomaswa,nouri,lihong,mlittman}@cs.rutgers.edu

Abstract. This work considers the problems of planning and learning in
environments with constant observation and reward delays. We provide a
hardness result for the general planning problem and positive results for
several special cases with deterministic or otherwise constrained dynam-
ics. We present an algorithm, Model Based Simulation, for planning in
such environments and use model-based reinforcement learning to extend
this approach to the learning setting in both finite and continuous envi-
ronments. Empirical comparisons show this algorithm holds significant
advantages over others for decision making in delayed environments.

1 Introduction

In traditional reinforcement learning [1], or RL, an agent’s observations of its
environment are almost universally assumed to be immediately available. How-
ever, as tasks and environments grow more complex, this assumption falters. For
example, the Mars Rover program has tremendously broadened the theater of
engagement available to roboticists, but direct control of these agents from Earth
is limited by the vast communication latency. Delayed observations are also a
challenge for agents that receive observations through terrestrial networks [2],
such as the Internet or a multi-agent sensor network. Even solo agents that do
advanced processing of observations (such as image processing) will experience
delay between observing the environment, and acting based on this informa-
tion. Such delay is not limited to a single timestep, especially when processing
may occur in a pipeline of parallel processors. These scenarios involving delayed
feedback have generated interest within the academic community, leading to the
inclusion of a delayed version of the “Mountain Car” environment in the First
Annual Reinforcement Learning Competition1. This paper considers practical
solutions for dealing with constant observation and reward delays.

Prior work in the area of delayed environments dates back over thirty years [3]
and several important theoretical results have been developed, including the in-
sight that action and observation delays are two sides of the same coin [4] and
that planning can be performed for both finite- and infinite-horizon delayed

1 http://rlai.cs.ualberta.ca/RLAI/rlc.html.

2

MDPs or POMDPs using algorithms for their undelayed counterparts in much
larger state spaces constructed using the last observation and the actions after-
ward [5, 6]. We cover this and several other approaches for planning and learning
in delayed environments in Section 3. We then show that such augmented ap-
proaches can lead to an exponential state space expansion and provide a hardness
result for the planning problem in general delayed MDPs. In light of these re-
sults, we develop algorithms for planning and learning in four special cases of
Markovian (if not for the delay) environments: finite and continuous worlds with
deterministic transitions, “mildly stochastic” finite environments, and continu-
ous environments with bounded noise and smooth value functions. In Section 5,
we provide the first empirical studies of learning agents in such delayed envi-
ronments. We assume throughout this work that the delay value is constant and
provided to the planner or learner at initialization.

2 Definitions

A finite Markov Decision Process [7] is defined as a 5-tuple 〈S, A, P, R, γ〉, where
S is a set of states, A is a set of actions, and P is a mapping: S ×A×S 7→ [0, 1]
indicating the probability of an action taking the agent from state s ∈ S to state
s′ ∈ S. R is a mapping: S 7→ ℜ, which governs the reward an agent receives
in state s (similar results to those in this paper hold for R : S × A 7→ ℜ),
and γ is the discount factor. A deterministic Markov policy, π : S 7→ A,
maps states to actions. We refer to such policies as memoryless, as they de-
pend only on the current state. The value function V π(s) represents the ex-
pected cumulative sum of discounted reward, and satisfies the Bellman equation:
V π(s) = R(s)+γ

∑

s′ P (s, π(s), s′)V π(s′). Every finite MDP has an optimal pol-
icy π∗ = argmaxπ V π(s) and a unique optimal value function V ∗(s). Given an
MDP, techniques exist for determining V ∗(s) and π∗(s) in time polynomial in
the size of the MDP [7].

In this work, we will also consider continuous MDP’s where S ⊆ ℜn and A
may also be continuous (A ⊆ ℜm). Computing value functions in this case often
requires approximation methods, an issue we treat in Sections 3.3 and 4.2.

We define a constant delayed MDP (CDMDP) as a 6-tuple 〈S, A, P, R, γ, k〉,
where k is a non-negative integer indicating the number of timesteps between an
agent occupying a state and actually receiving its feedback (the state observation
and reward). We assume that k is bounded by a polynomial function of the size
of the underlying MDP and the agent observes its initial state in response to
each of its first k actions.

One may think of a CDMDP policy as a mapping from previous state obser-
vations and actions (that is, histories) to actions, since the current state is not
revealed at the time an action is taken if k > 0. It is known that an optimal
CDMDP policy can be determined using Ik ∈ S × Ak, the last observation and
previous k actions, following [5]. In light of this fact, we formally define a CD-
MDP policy as π : (S ×Ak) 7→ A. The CDMDP planning problem is defined as:
given a CDMDP, initial state I0

k , and a reward threshold θ, determine whether

3

a policy exists that achieves an expected discounted reward (from the initial
state) of at least θ. In the CDMDP learning problem, an agent deployed in a
delayed-feedback environment knowing only S, A, γ, and k is tasked with finding
an optimal policy for the environment online.

The positive results of this paper pertain to the following special cases for
the underlying (undelayed) Markovian dynamics:

I Deterministic finite: The undelayed MDP is finite and ∀s∃s′P (s, a, s′) = 1.
II Deterministic continuous: Same as Case I except S and A are continuous.

III Mildly stochastic finite: The undelayed MDP is finite and there is some
δ ≥ 0 s.t. ∀s∃s′P (s, a, s′) ≥ 1 − δ. Case I is a degenerate case where δ = 0.

IV Bounded-noise continuous: The underlying MDP is continuous, and tran-
sitions are governed by st+1 = T (st, at) + wt, where T is a deterministic
transition function: S × A 7→ S, and wt is bounded noise: ‖wt‖∞ ≤ ∆ for
some ∆ ≥ 0. We further assume that the CDMDP’s optimal value function
is Lipschitz continuous when the action sequences for two Ik’s coincide. That
is, |V ∗(s, a1, · · · , ak) − V ∗(s′, a1, · · · , ak)| ≤ CV ‖s − s′‖ for some constant
CV > 0. This assumption is a consequence of smoothness of the underlying
MDP’s dynamics. We note that this case covers a wide class of dynamical
systems, including those with linear transitions and bounded white noise.

3 Strategies for Dealing with Delay

We now cover several known methods for acting in delayed environments and
introduce a new method for planning in the special cases covered above.

3.1 General Approaches

The first solution we consider is the wait agent, which “waits” for k steps,
and acts using the optimal action in the undelayed MDP. More formally, this
approach corresponds to a CDMDP policy of π(Ik) = π∗(s) if Ik = (s, ∅k), and
∅ otherwise. Here, ∅ is the “wait” action. Some environments, such as Mountain
Car, where the agent is rarely at a standstill, will not permit waiting, and even
in those that do, the resultant policies will usually be suboptimal.

Another intuitive planning approach is to just treat the CDMDP as an MDP
and use the memoryless policy π(Ik) = {π∗(s) | Ik = (s, a1, · · · , ak)}. In some
environments, this simple solution can produce reasonable policies, especially
if the delay is relatively small compared to the magnitude of the state tran-
sitions. For the CDMDP learning problem, searching for the best policy that
ignores delay is intimately connected to the search for good memoryless poli-
cies in POMDPs. One known technique that has shown empirical success in
the latter theater is the use of eligibility traces [8], particularly in the online
value-function-learning algorithm Sarsa(λ). Using λ > 0, the values of states in
the same trajectory become “blurred” together, mitigating the effect of partial
observability (in our case, delayed observations). As such, we include Sarsa(λ)
in our empirical study (see Section 5) of the CDMDP Learning Problem.

4

The traditional method for modeling MDPs with constant delay is the aug-
mented approach [5], which involves explicitly constructing an MDP equivalent
to the original CDMDP in the much larger state space S ×Ak. The formal con-
struction of such an MDP is covered in previous work [4]. One can then use any
of the standard MDP planning algorithms to determine V ∗(Ik) for Ik ∈ S ×Ak.
The corresponding optimal policy is known to be an optimal policy for the
CDMDP [6]. Unfortunately, this expansion renders traditional MDP planning
algorithms intractable for all but the smallest values of k. In Section 4.1, we
show that the exponential state space growth is unavoidable in general, but in
Section 3.2, we describe an approach that averts this computational burden and
provides optimal or near-optimal policies in the special cases from Section 2.
In Section 4.3, we outline a practical way to learn the augmented model with
a polynomial number of samples. We note here that several RL modeling tech-
niques that have an intuitive relationship to the CDMDP paradigm reduce, in
the worst case, to the augmented approach and are therefore equally infeasible.
These include modeling CDMDPs via factored MDPs, POMDPs, or POMDPs
with variable length wait actions. The focus of this paper is on practical solu-
tions for CDMDPs, and so we do not further discuss these generally intractable
solutions, comparing simply against the augmented approach.

3.2 A New Approach: Model Based Simulation (MBS)

We now introduce a planning algorithm, Model Based Simulation (MBS), de-
signed for the restricted CDMDP cases from Section 2. The intuition behind
MBS is that, in a deterministic or benignly stochastic environment, given Ik,
one can use P to “simulate” the most likely single-step outcomes of the last
k actions, starting from the last observed state, thus determining, or at least
closely approximating, the current state of the agent. In the deterministic cases,
this prediction is straightforward. In the other two cases, (mildly stochastic and
bounded noise) the algorithm will use the most likely or expected outcome, re-
spectively. The MBS algorithm appears in Algorithm 1.2

Extending MBS to the learning setting is fairly straightforward in the context
of finite CDMDPs (Cases I and III). One needs only to employ a model-based
RL algorithm such as R-max [9] to learn the parameters (P and R) of the under-
lying zero-delay MDP. However, to extend MBS to continuous CDMDPs, simply
discretizing the environment is not sufficient because this approach can easily
turn deterministic (Case II) or slightly perturbed (Case IV) state transitions into
far less benign dynamics, making the action simulations unsuitable. Instead, we
require a method that trains a model of the transitions in the continuous space
itself, but still plans in the discretized space (in order to make valid comparisons
against the policies of the other finite-space algorithms). The next section defines
such an algorithm.

2 Note: for continuous MDPs, some steps may require approximation, see Section 4.2.

5

Algorithm 1 Model Based Simulation

1: Input: A CDMDP M = 〈S, A, P, R, γ, k〉, and Ik = (s, a1, a2, · · · , ak) ∈ S × Ak.
2: Output: The optimal action a∗ = π∗(Ik)
3: Construct a regular MDP M̄ = 〈S, A, P̄ , R, γ〉 where P̄ (s, a, s′) = 1 for the most

likely (finite) or expected (continuous) outcome of a in s.
4: Find the optimal value function V̄ ∗ and an optimal policy π̄∗ for M̄ .
5: Compute the current (but unobserved) state s̄ by applying action sequence

(a1, · · · , ak) to s according to P̄ .
6: Return π̄∗(s̄).

Algorithm 2 Model Parameter Approximation

1: Input:
2: A collection of N sample instances X = {(si, ai, ri, s

′

i) | i = 1, 2, · · · , N}
3: S, A, γ and Rmax from a continuous MDP
4: Function approximators TA and RA

5: The current continuous observation s

6: Output: The action to be taken from s.
7: Train TA and RA using X.
8: Construct discrete MDP M̂ = 〈Ŝ, A, P̂ , R̂, γ〉; for any s̄ ∈ Ŝ and a ∈ A:
9: if we have enough samples in X then

10: use maximum-likelihood estimates
11: else if TA and RA have high confidence then

12: generate an artificial sample set X ′ using TA and RA, build model using X ∪X ′

13: else

14: P̂ (s̄, a, s̄) = 1 and R̂(s̄, a) = Rmax.
15: end if

16: Find the optimal value function V̂ ∗ and an optimal policy π̂∗ for M̂ .
17: ŝ = Discretize(s)
18: Return π̂∗(ŝ).

3.3 Model Parameter Approximation

Model Parameter Approximation, or MPA, (Algorithm 2) is a model-based RL
algorithm designed for MDPs with bounded, continuous state and action spaces.
MPA is closely related to Lazy Learning [10], which uses locally weighted regres-
sion to build approximations of the MDP dynamics and then plans in a dis-
cretized version of the MDP, using the trained regressor as a generative model.
MPA performs a similar construction, but it can use any function approximator
and borrows from the R-max algorithm by tagging state/action pairs as “known”
or “unknown” and encouraging exploration of the unknown areas.

MPA is a model-based reinforcement-learning algorithm for zero-delay MDPs
whose planning component is very similar to MBS without simulation. Therefore,
to use MPA in the continuous CDMDP learning setting, we perform MBS’s
simulation before the discretization of the current state using MPA’s transition
function approximator, TA, to apply the action sequence (using the expected
one-step outcomes). We then discretize the outcome of that simulation and use

6

the appropriate action. This CDMDP learning algorithm, MBS+MPA, produces
a “discretized” policy, valid for comparison against the other algorithms we will
investigate in Section 5.

4 Theoretical Analysis of Delayed Problems

In this section, we develop several theoretical properties of the CDMDP planning
and learning problems for CDMDPs as described in Section 2. Our treatment
includes a hardness result in the general case, positive results for the four special
cases, and an efficient way to learn augmented models.

4.1 Planning Results I: The General Case

The augmented approach represents a sound and complete method for finding
an optimal policy. Although in certain cases it is unnecessary to fully expand
the state space to S ×Ak, Theorem 1 below shows that converting the CDMDP
representation to an equivalent augmented MDP representation can require an
exponential expansion over the size of the compact CDMDP model.

Theorem 1. The smallest regular MDP M̄ = 〈S̄, A, P̄ , R̄, γ〉 induced by a finite
CDMDP M = 〈S, A, P, R, γ, k〉 can have a lower bound of |S̄| = Ω(|A|k).

Proof (sketch). In an MDP, applying action a from state s produces a probability
distribution over next states. It follows from the Markov assumption that in an
MDP with |S| states, there can be at most |S| distinct probability distributions
over next states for any possible action. Thus, the compact CDMDP represen-
tation, which has only |S| states, requires |S| · |A| probability distributions. In
the worst case, however, we’re able to construct an MDP such that each action
can result in Θ(|A|k) probability distributions based on different k-step histories
(s, a1, ..., ak). Thus, the representation of the induced augmented MDP provably
has |S| · |A|k states and |S| · |A|k+1 distributions. ⊓⊔

The exponential increase in the number of states suggests that this approach
is intractable in general, and the next theorem establishes that it is unlikely the
CDMDP planning problem can be solved in polynomial time.

Theorem 2. The general CDMDP planning problem is NP-Hard.

Proof (sketch). The proof is by reduction from the problem of planning in a
finite-horizon unobservable MDP (UMDP). The construction takes a UMDP
with |S| states and horizon k and turns it into an infinite-horizon CDMDP with
delay k and k + k|S| + 1 states. The first k states are merely “dummy” states
needed to define I0

k . Each of the next k|S| states represents one of the UMDP
states at a timestep t, the new rewards are r(s)/γt, and extra transitions are
added from the old “final” states to a new final trap state with 0 reward. A
solution to this problem would provide an answer to whether any policy from a
given start state in a finite horizon UMDP can have a value of at least θ, which
is known to be NP-Complete [11]. ⊓⊔

7

A more complicated reduction from 3-SAT shows this problem is indeed
strongly NP-Hard. We note that if P 6= NP, then Theorem 1 would be a direct
consequence of Theorem 2 since an MDP can be solved in time polynomial
in the size of its representation. However, Theorem 1 gives a stronger result,
showing an exponential blowup in representation is unavoidable when converting
a CDMDP to an MDP, even if P=NP. The NP-Hardness result for CDMDP
planning motivates the search for constrained cases where one can take advantage
of special structure within the problem to avoid the worst case. We now provide
theoretical results concerning the four special cases previously defined.

4.2 Planning Results II: Special Cases

The following results provide bounds on
∥

∥V̄ ∗ − V ∗
∥

∥

∞
, where V̄ ∗ is the value

function for π̄∗ computed by MBS in its deterministic approximation M̄ (c.f.
Algorithm 1), and V ∗ is the true CDMDP value function. These bounds are also
accuracy bounds for answering the CDMDP planning problem using M̄ instead
of M and can be used to derive the actual online performance bounds when
using greedy policies w.r.t. V̄ ∗ compared to the optimal CDMDP policy [12].

We begin with the finite-state cases, starting with the more general “mildly
stochastic” setting (Case III) where MBS will assume that the last k transitions
have each had the most likely one-step outcome.

Theorem 3. In Case III,
∥

∥V̄ ∗ − V ∗
∥

∥

∞
≤ γδRmax

(1−γ)2 . Hence, MBS solves the CD-

MDP planning problem for such CDMDPs with this accuracy in polynomial time.

Proof (sketch). We first bound the error on the one-step backup of the deter-
ministic approximation, and then extend this result over the value function. An-
swering the CDMDP planning problem within this accuracy can then be done
by approximating the current state s through simulation and comparing V̄ ∗(s)
to the reward bound θ. The major operation for MBS is the computation of V̄ ∗

for a deterministic MDP M̄ , which can be done in O(SA + S3) [13]. ⊓⊔

We note that, by definition, V̄ ∗ has taken the k-step prediction error into ac-
count; therefore, Theorem 3 provides a bound (indirectly) for the performance
of MBS when it has to predict forward k steps using an inaccurate model. The
bound above is only practically useful for small values of δ, because larger values
could cause M̄ to be a very poor approximation of M . At the opposite extreme,
setting δ = 0, we arrive at the following result for Case I:

Corollary 1. In Case I, MBS solves the CDMDP planning problem exactly in
polynomial time.

In the continuous cases (II and IV), computing V̄ ∗ and its maximum, even
in the undelayed case, requires approximation (e.g. discretization [14]) that will
introduce an additional error, denoted ǫ, to V̄ ∗ as compared to V ∗. Computing
V̄ ∗ will also require some (possibly not polynomially bounded) time, T . In Case
IV, we assume the magnitude of the noise is bounded by ∆ and the optimal
CDMDP value function is Lipschitz continuous with constant CV , leading to
the following result.

8

Theorem 4. In Case IV, assuming an approximation algorithm for computing
V̄ ∗ within ǫ accuracy, MBS solves the CDMDP planning problem with accuracy
2γCV ∆

1−γ
+ ǫ in time polynomial in the size of the input and T .

Proof (sketch). We establish an error bound on the one-step backup
of the deterministic approximation using the Lipschitz condi-
tion given in Section 2. The major step in this proof is showing
˛

˛maxa

R

S
P (s, a1, s

′)V ∗(s′, a2, · · · , ak, a)ds′ − maxa V ∗(s0, a2, · · · , ak, a)
˛

˛ ≤ 2CV ∆,
where s0 is the expected next state by taking a in s. From there, the proof is
similar to Theorem 3, using the approximation algorithm when appropriate. ⊓⊔

Similarly to Case III, this bound is only of interest if ∆ and ǫ are small. By setting
∆ = 0, we arrive at the following result that says planning in deterministic
continuous CDMDPs is the same as in their equivalent undelayed ones:

Corollary 2. In Case II, the MBS algorithm, using an approximation algorithm
to compute V̄ ∗, can answer the CDMDP planning problem with accuracy ǫ in
time polynomial in the size of the input and T .

4.3 A Remark on Learning

A naive approach to the general CDMDP learning problem would be to apply
standard RL algorithms in the augmented state space. While theoretically sound,
this tack requires gathering experience for every possible Ik (an exponential
sampling requirement). A preferable alternative is to instead learn the one-step
model from experience, then build the augmented model and use it to plan,
in conjunction with an algorithm, like R-max [9], that facilitates exploration.
While this compact learning approach still suffers in the worst case from the
unavoidable exponential burden of planning (Theorems 1 and 2), its sampling
requirement is polynomially bounded, making it somewhat more practical.

5 Empirical Algorithm Comparisons

We now evaluate several of the methods discussed in Section 3 in the learning
setting for each of the four cases. Agents were evaluated in episodic domains
based on average cumulative reward for 200 episodes with a cap of 300 steps
per episode. All data points represent an average over 10 runs. We implemented
the “wait agent” using R-max in the finite-state setting and with MPA for con-
tinuous environments. Several variants of the memoryless-policy strategy were
appraised, including model-based RL algorithms, R-max and MPA, as well as
Sarsa(0)3, Sarsa(.9), and “Batch” versions of Sarsa (B-Sarsa) that used experi-
ence replay [15] every 1000 steps. The Sarsa learning rate was set to .3 (empiri-
cally tuned) and exploration in these cases was guided by optimistic initialization
of the value function along with an ǫ-greedy [1] approach for picking actions, with

3 Variants of Q(λ)-learning were also tried, yielding similar results to Sarsa(λ).

9

ǫ initialized to .1 and decaying by a factor of .95 per episode. Due to the large
number of variations, only the best and worst of these “memoryless” approaches
are plotted for each environment. For the “augmented” MDP approaches, we
investigated both the naive and compact learners described in Section 4.3, with
planning taking place in the augmented space using R-max. We also evaluated
a naive Sarsa(λ) learner in the augmented space. Unfortunately, the computa-
tional burden of planning made these augmented approaches infeasible beyond
delays of 5. Finally, for MBS, we again used R-max or MPA, as appropriate.

5.1 Delayed W-maze I: A Deterministic Finite Environment

We begin with a deterministic finite (Case I) world, the “W-maze”, as depicted
in Figure 1 (left). The agent starts in a random cell and its goal is to escape
the maze through the top center square by executing the “up” action. All steps
within the maze garner a reward of −1. The environment is designed to thwart
memoryless approaches, which have trouble finding the right situation to begin
going “up” and instead alternate between the extreme branches.

Figure 1 (right) shows the results of this experiment. The “wait” agent
performs well in this environment, but sub-optimally for k > 0. In contrast,
MBS+R-max quickly achieves optimality for all delay values. The best memory-
less performer was B-Sarsa(.9), but its performance drops well below the random
agent at higher delays. The worst memoryless learner was R-max, which fails to
learn the transition function for k > 0. The compact version of the augmented
learner performs comparably to MBS+R-max, but the planning for this method
becomes intractable beyond a delay of 5. As expected, the naive augmented
learners see a significant performance drop-off as delay increases. Unlike the
memoryless approaches, which learn fast but can’t represent the optimal policy,
these learners are too slow to learn from the finite samples available to them.

G

-300

-250

-200

-150

-100

-50

0

0 2 4 6 8 10

delay

a
v
g

.
c
u

m
u

la
ti
v
e

 r
e

w
a

rd

MBS+R-max

Aug Compact

Wait R-max

Aug R-max

Aug Sarsa(.9)

B-Sarsa(.9)

Random

R-max

Fig. 1. Left: W-maze. Right: Experimental results for deterministic W-maze.

10

5.2 Delayed Mountain Car: A Case II Environment

We further investigated these algorithms in a domain with deterministic contin-
uous dynamics (Case II), a delayed version of “Mountain Car” [1], which was an
event in the First Annual Reinforcement Learning Competition. The environ-
ment is made up of two continuous variables, representing the car’s location and
speed. The car has 3 actions (forward, neutral, reverse) and rewards of −1 for
all steps and 0 at the top of the hill. For the “memoryless”, and “augmented”
approaches, we continued to use the algorithms described in the previous section
and overlaid a 10 × 10 (empirically tuned) grid for discretization. The “wait”
agent strategy was not applicable because this domain has momentum. For MPA,
we used Locally Weighted Progression Regression (LWPR) [16] to approximate
the transition function, and an averager to approximate the reward function.
The results are illustrated in Figure 2 (left). Again, the best performer was
MBS+MPA, which has the advantage of modeling continuous actions and effi-
ciently compensating for delay. However, for many delay values, Batch Sarsa(.9)
performed almost as well, because action effects in Mountain Car are quite small.
By focusing on the results of the memoryless learners (Figure 2 (right)), we see
the clear benefit of eligibility traces as both B-Sarsa(.9) and Sarsa(.9) outperform
B-Sarsa(0), Sarsa(0) and MPA (without MBS) when k > 0.

-250

-200

-150

-100

-50

0

0 5 10 15 20

delay

a
v
g

.
c
u

m
u

la
ti
v
e

 r
e

w
a

rd

MBS+MPA

B-Sarsa(.9)

Aug Compact

Aug R-max

Aug Sarsa(.9)

Sarsa(0)

Random

-250

-200

-150

-100

-50

0

0 5 10 15 20

delay

a
v
g

.
c
u

m
u

la
ti
v
e

 r
e

w
a

rd

B-Sarsa(0)

B-Sarsa(.9)

MPA

Sarsa(0)

Sarsa(.9)

Random

Fig. 2. Mountain Car Results. Left: various strategies. Right: memoryless learners.

5.3 Delayed W-maze II: A Stochastic Finite Environment

We also considered a mildly stochastic (Case III) version of W-maze, where
actions succeed with a probability of .7 and “slip” in one of the other three
directions with probability .1 each. The results of this experiment are illustrated
in Figure 3 (left). Despite the non-determinism in the domain, MBS+R-max
performed comparably to the compact augmented learner and outperformed all
of the other approaches. The memoryless approaches all flounder with increasing
delay, being outdone even by the naive augmented R-max and “wait” learners.

11

-160

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10

delay

a
v
g
.
c
u
m

u
la

ti
v
e
 r

e
w

a
rd

MBS+R-max

Aug Compact

Wait R-max

Aug R-max

B-Sarsa(.9)

Aug Sarsa(.9)

Random

R-max

-1300

-1100

-900

-700

-500

-300

-100

0 5 10 15 20 25

delay

a
v
g

.
c
u

m
u

la
ti
v
e

 r
e

w
a

rd

B-Sarsa(.9)

MBS+MPA

Random

Sarsa(0)

Wait MPA

Aug Compact

Aug R-max

Aug Sarsa(.9)

Fig. 3. Experimental results for stochastic W-maze (left) and Puddle World (right).

5.4 Delayed Puddle World: A Case IV Environment

Finally, we investigated a Case IV environment, Stochastic Puddle World [17]
where action outcomes were perturbed by bounded Gaussian noise. The 2-D en-
vironment contains two puddles and a goal. Steps within the puddles garner large
negative rewards while all other steps yield −1. A 10×10 tiling was used for dis-
cretization. The batch learners used experience replay every 2500 steps because
of noise effects. The results are reported in Figure 3 (right). MBS+MPA clearly
outperforms its memoryless counterparts, though eligibility traces help maintain
performance with increasing delay. As with Mountain Car, MBS+MPA outper-
forms some augmented learners at k = 0 because MPA’s function approximators
quickly and accurately learn the domain dynamics. The “wait” agent, which loi-
ters in the puddles, performs poorly for large delays. This domain dramatically
exhibits the benefits of the compact augmented approach over the naive ones.

6 Conclusions and Future Work

In this paper, we evaluated algorithms for environments with constant obser-
vation and reward delay. We showed the general CDMDP planning problem is
NP-Hard, but planning can be done in polynomial time in the deterministic fi-
nite setting, and we provided loss bounds in three other settings. We introduced
Model Based Simulation (MBS) for planning in CDMDPs, and Model Parameter
Approximation (MPA) to extend MBS for learning in continuous environments.
Our experiments show this approach outperforms various natural alternatives in
several benchmark delayed MDPs.

Several open research topics in this area remain. In the learning setting, one
could relax the assumption that the delay is known, perhaps learning the delay
values using clustering. A related problem is variable delay, or jitter, which is
common when dealing with network latency and has been studied in prior work
on augmented models [4]. Also, though we covered two important stochastic
special cases, there may be more conditions that facilitate efficient planning.
A related open question is whether an algorithm that exploits structure within

12

the belief space (for instance, if the number of reachable belief states from any
start state within k steps is small) could plan in time not influenced by the
potential exponential expansion. We note that MBS is an extreme case of such
an algorithm, which considers only |S| reachable belief states, all of them pure.

Acknowledgments This work was supported in part by NSF IIS award
0329153. We thank the First Annual Reinforcement Learning Competition,
Adam White, and the anonymous reviewers for their contributions.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (March 1998)

2. Altman, E., Nain, P.: Closed-loop control with delayed information. In: Proc. 1992
ACM SIGMETRICS and PERFORMANCE. (1-5 1992) 193–204

3. Brooks, D.M., Leondes, C.T.: Markov decision processes with state-information
lag. Operations Research 20(4) (1972) 904–907

4. Katsikopoulos, K.V., Engelbrecht, S.E.: Markov decision processes with delays and
asynchronous cost collection. IEEE Transactions on Automatic Control 48 (2003)
568–574

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control. 2nd edn. Volume
1/2. Athena Scientific (2001)

6. Bander, J.L., White III, C.C.: Markov decision processes with noise-corrupted and
delayed state observations. The Journal of the Operational Research Society 50

(1999) 660–668
7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, New York (1994)
8. Loch, J., Singh, S.: Using eligibility traces to find the best memoryless policy in

partially observable Markov decision processes. In: ICML. (1998) 323–331
9. Brafman, R.I., Tennenholtz, M.: R-max–a general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research 3

(October 2002) 213–231
10. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning for control.

Artificial Intelligence Review 11(1–5) (1997) 75–113
11. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.

Mathematics of Operations Research 12(3) (1987) 441–450
12. Singh, S.P., Yee, R.C.: An upper bound on the loss from approximate optimal-value

functions. Machine Learning 16(3) (1994) 227–233
13. Littman, M.L.: Algorithms for Sequential Decision Making. PhD thesis, Brown

University, Providence, RI (1996)
14. Munos, R., Moore, A.W.: Rates of convergence for variable resolution schemes in

optimal control. In: ICML. (2000) 647–654
15. Lin, L.J.: Reinforcement Learning for Robots using Neural Networks. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA (1993)
16. Vijayakumar, S., Schaal, S.: Locally weighted projection regression: An o(n) al-

gorithm for incremental real time learning in high dimensional space. In: ICML.
(2000) 1079–1086

17. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely ap-
proximating the value function. In: NIPS. (1995) 369–376

