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Abstract

This paper considers a setting where a single “leadership
agent” intervenes in a multi-agent system through actions that
(perhaps subtly) change the dynamics of the system. We de-
scribe a number of forms this intervention can take and com-
pare these situations to settings in previous work. We iden-
tify two important effects of leadership: faster system con-
vergence, and convergence to a better equilibrium. Empiri-
cally, we first explore these properties in leadership of algo-
rithms engaged in classical 2-player games. We then apply
this general framework to the leadership of a super-peer file-
sharing network. In these experiments the network contains
some agents that make locally greedy decisions that hamper
the network as a whole. We show that a leader acting based on
a more global criteria can push the system to a better equilib-
rium point as well as speeding up convergence. We also show
how a mathematical approximation of such super-peer net-
works can be used to aid a leader in determining a minimum-
cost intervention strategy.

Introduction
Within the multi-agent systems (MAS) community, the
problems of manipulating agents by a self-interested player
has been studied in numerous settings. However, less atten-
tion has been focused on the problem of an external agent,
playing with different actions and different (perhaps more
global) utilities, manipulating the system as a whole. Such
situations seem to occur often in practice. For instance, con-
sider a network of complicated trading agents exchanging
resources. A “commissioner” agent in this situation may
have to choose whether to block certain trades based on the
cost of this intervention and its value of certain global prop-
erties (e.g. avoiding monopolies).

In this paper, we describe similar situations as leadership
games. Leadership games involve a system of multiple (po-
tentially learning) agents as well as an external agent called
the leader. The leader will typically have a different set of
available actions and a more global utility function than the
other agents in the system. However, we will typically as-
sume that the set of leadership actions is not enough to com-
pletely change the system (which would make this essen-
tially a mechanism design problem). Instead, the leader may
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only be able to subtly prod the system by giving rewards or
extra resources, or constricting the availability of resources
or actions, all with respect to particular agents.

In general, this paper focuses on two important functions
a leader can serve with respect to an agent system. First, a
leader may improve the convergence rate of a system, that is
decrease the amount of time needed for the behaviors of the
agents to become stationary. Perhaps more importantly, we
show that if the system has multiple possible convergence
points (or equilibria of player policies), a leader can actually
influence which one the system will converge to. Moreover,
this can often be done without overwhelming the dynam-
ics of the original game, through a limited-time intervention
by the leader who can stop intervening once the system has
reached the desired equilibrium.

While we investigate these properties briefly in Bimatrix
games, the main application of our current work is in lead-
ing a type of peer-to-peer file sharing network called a Super
Peer Network. These networks are comprised of two types of
agents, weak peers, who make requests for files in the net-
work and super peers who act as middlemen in the system
and keep pointers to files in limited-size caches. We study
a case where some of the super peers manage their caches
greedily, maximizing their individual profit, but damages the
system as a whole as many files become inaccessible and
more altruistic super peers are starved. We show how a num-
ber of different leaders can affect such a system’s conver-
gence rate and asymptotic behavior through a limited inter-
vention. Furthermore, we show that using a simplified math-
ematical model of the network, a leader can be constructed
that attempts to minimize the cost of its intervention while
still pushing the system to better performance.

Leadership Games
We now provide a general definition of the kinds of multi-
agent systems that support leadership games and some pro-
totypical action sets and utility functions that might guide a
leader’s behavior. We then describe how the leader’s ability
to influence various elements of the MAS can turn a leader-
ship game into familiar scenarios from the literature.

General Definition
A leadership game GL = 〈G,L〉 consists of a base game
G, as well as a leader L. G is an MAS containing n play-



ers, where each player i has an action set Ai and is guided
by some utility function Ui. In general, it will be helpful to
consider some typical game constructs such as attitudes and
resources. Attitudes αij capture the disposition i towards j.
The resources in the game R are a set of typed elements
that each agent can acquire (or lose) through actions. For in-
stance, in an auction setting, the resources may be money
and the items to be purchased, and attitudes may be adjusted
based on who is winning or losing in the different episodes.
The utility function Ui is usually a function over the re-
sources held by each agent, with weights or other constructs
determining the relative allure of each resource to the given
player. We will often refer to the empirical one-step utility
as a payout. We consider all of the agents in the system to be
attempting to maximize their utility over the lifetime of the
game. Thus, agents may end up acting adversarially, nega-
tively affecting the overall utility of the system. For instance,
in an auction system, one rogue agent with many resources
could simply outbid all the other impoverished agents, lead-
ing to low global measures of utility.

In a leadership game, the leader is usually tasked with
making sure the system avoids such extremes or reaches a
stable equilibrium that maximizes some level of global util-
ity without costing the leader too much. More specifically,
the leader exists externally to G in that the other players can-
not directly affect his available actions or resources, but their
behavior can affect his utility. The leader has its own ac-
tion set AL which it can use to influence the dynamics of G.
The leader takes actions in order to maximize its own util-
ity function UL, which we generally assume is related to the
overall performance of G. We assume that the agents in G
can view the leader’s actions and therefore may have atti-
tudes towards him (and vice versa) and the leader may have
finite resources to use in the domain. Hence, the leader may
need to make decisions about the most economical use of its
manipulation abilities.

Typical Leadership Actions, Goals and Effects
We now describe a number of prototypical actions and utility
functions that a leader may be equipped with. The actions for
a leader will generally involve either changing the allocation
of resources or constraining a player’s available actions.

A leader that can change the allocation of resources may
take on several forms. In simple two player Bimatrix games,
where resources are only allocated as payouts (that imme-
diately disappear), we will see that adjusting the payouts
through reward shaping can change the resource allocation
in G enough to change the behavior of the players. In larger
games, changing the payouts on each turn can amount to
bribery and changing the allocation of resources on each turn
is similar to market design problems (as discussed below). A
leader may also have the ability (as we use in our later exper-
iments) to “block” certain agents from taking certain actions
or at least limit the probability of the action’s success.

In terms of utility functions, the leader may be driven by
any of a diverse set of measures, including for instance, the
average utility at each step for each of the n agents, or in
more complex games, measures such as the total throughput
of an information network or a measure of overall market

performance. Whatever the motivating factor for the leader,
we consider three important measures of its success:

1. The leader can affect the convergence rate of the system.
That is, suppose G has a single equilibrium or distribution
over equilibria. The leader may not have the resources or
the capabilities to change the asymptotic behavior of the
system, but he may be able to get it to converge faster by,
for instance, making payouts larger or more deterministic.

2. The leader may change the equilibrium that G converges
to. Specifically, when there are multiple potential equi-
libria in G, the leader can potentially push the agents to-
wards a more desirable (in terms of UL) asymptote. In
situations where the desired equilibrium is stable without
L, the leader can potentially stop performing actions after
the system has stabilized.

3. The leader may have constrained resources or costs of its
own for intervening. Therefore criteria (1) and (2) may
need to be balanced against the leader’s budget.

Leadership in Related Work
We now describe how realizations of leadership games in
prior work can be viewed through the general framework de-
scribed above. First, we note that if the leader has full control
over the dynamics of resources and payouts, and full knowl-
edge of the agents in G, the leadership game is essentially a
mechanism design problem (Conitzer and Sandholm 2007;
Guo and Conitzer 2010). This is a large field in MAS
where the construction of voting, auction, and other sys-
tems have been studied in situations where agents may mis-
represent their types. However, these works often assume
the ability to change almost all of the parameters of the
game. In leadership games, the leader’s actions are often
far more constrained and the leader needs to act dynami-
cally against an MAS that may have several uncontrollable
parameters. Similarly, the kind of problems often seen in
the Market Design track of the Trading Agent Competi-
tion (http://tradingagents.org/) can be viewed as leadership
games where multiple leaders are competing for the alle-
giance of the agents in G. Strategies in this vein range from
rule-based systems (Petric et al. 2008) to systems that dy-
namically profile agents in G (Gruman and Narayana 2008).

In situations where the leader can (with cost constraints)
only affect the resources or payouts on each step, the prob-
lem is similar to efforts in multi-agent reward shaping in
simple games and manipulation in more complex domains.
Work in multi-agent reward shaping has shown the increased
convergence rate (Babes, de Cote, and Littman 2008) de-
scribed above and we show below that it can also be used to
push agents towards different equilibria. In larger systems, a
leader’s ability to change the reward allocation or payouts is
similar to studies of bribery in voting systems (Faliszewski,
Hemaspaandra, and Hemaspaandra 2006; Yoram Bachrach
and Faliszewski 2011). Indeed, recent work on voting ma-
nipulation has analyzed the complexity of minimizing the
cost to the leader in different conditions (Bachrach et al.
2009). However, it is not clear if these lessons can be gener-
alized beyond the specific systems studied.



In the opposite case, where the leader does not control
resources but can only directly manipulate attitudes, leader-
ship games look very much like the influence networks stud-
ied in social network theory and indeed the use of approx-
imations for planning by a leader in such domains (Hung,
Kolitz, and Ozdaglar 2011) mirror results we present in our
super peer case study.

Finally, we note the connection to classical game theory
and dynamical systems in several settings. For instance, if
there are no learning agents in the MAS, then the leader-
ship game is simply a two player interaction with a static
opponent (the MAS). If the leader is able to force players to
play actions from a distribution, the leader may be acting as
an information source for a correlated equilibrium, though
generally we do not consider leaders that can directly ma-
nipulate players in this way. In the case where the leader
has the same action set as others in the MAS and also the
same utility function, leadership games mirror the problem
of leadership in multi-player games where agents can bene-
fit by committing to a leader-follower pattern (Littman and
Stone 2002).

Leadership in Bimatrix Games
We now provide some basic experimental results on leader-
ship in Bimatrix games with two agents and 2 actions (coop-
erate and defect). In the base games, the only resources are
the payouts on each turn and attitudes are captured indirectly
by the action values. The leadership action we will consider
in this setting is reward shaping (Ng, Harada, and Russell
1999), that is, a small amount of reward given (or subtracted)
by the leader to one or both agents when they perform ac-
tions the leader supports (or dislikes). Prior work (Babes, de
Cote, and Littman 2008) has studied the use of admissible
shapes in such games, specifically when the shape at time t
is determined by a difference of potentials γφ(st)−φ(st−1)
where the states s are determined by the representation of
the individual learners. In such cases, shapes do not change
the set of subgame-perfect equilibria for the particular play-
ers in G, but instead act as a bias (which can be overcome
through data) that can increase the convergence rate of the
system. Here we will concentrate on how a leader that injects
admissible or inadmissible shaping rewards into the system
can change the equilibrium the system converges to.

First, we present a result in the Assurance game (Littman
and Stone 2002) where payouts are 3 each for mutual coop-
eration, 1 each for mutual defection, and a cooperate/defect
pairing yields 0 to the cooperator and 2 to the defector.
There are two pure Nash equilibria in this game, either mu-
tual cooperation or mutual defection. Figure 1 (left) shows
the effect of leadership with an admissible reward shape in
this game on two Q-learners (Watkins 1989) with 1 step of
memory and using a learning rate of α = 0.1 and non-
decaying ε-greedy exploration with ε = 0.1. Specifically,
the leader, who covets the higher global utility from mu-
tual cooperation, provides a reward shape based on ρ(s) =
−5 for states where the agent just defected and otherwise
ρ(s) = 0. Again, because the actual shape is calculated by
γφ(st) − φ(st−1), this only biases the agents and does not
change the equilibria. The figure shows cooperation rates

Figure 1: Percentage of cooperation (averaged over 500
runs) with and without leadership leadership in Assurance
(left) and Prisoner’s Dilemma (right). In both cases the
leader stops shaping halfway through the run.

when a leader that injects such reward shapes over only the
first half of a trial. Even this temporary leadership has the ef-
fect of biasing the learners towards convergence at the more
globally appealing point, whereas without the leader, this
best global equilibria is only reached approximately 60%
of the time (mirroring the original results of (Littman and
Stone 2002)). One should also notice the dip in coopera-
tion just as the leader leaves the system, which occurs be-
cause the values for cooperation decrease when the shapes
are removed, leading to a flirtation with defection, though
the system quickly recovers. We have noticed this “leader-
ship bump” often occurs when a leader starts or stops inter-
action with a system, and we will see this phenomenon again
in our larger case study.

It is also possible for a leader to provide inadmissible
shaping rewards, but the effect of these incentives is only
temporary as they tend to briefly overwhelm the game be-
fore the leader steps out. Figure 1 (right) shows the percent-
age of cooperation among two single-state (memoryless) Q-
learning agents in the classic Prisoner’s Dilemma game with
payouts of 3 for mutual cooperation, 1 for mutual defection
and 5 to the defector (0 to the cooperator) when the actions
differ. Here we see a leader that uses an inadmissible reward
shape of −5 to any defectors, thereby overwhelming the
game’s structure, but once the leader withdraws, the agents
largely fall back into mutual defection (the Nash equilib-
rium for G). This effect is not always as immediate– we have
seen that Q-learners with memory (multiple states) in this
game will maintain a slightly higher percentage of coopera-
tion (around 40% after the leader versus 30% with no leader
at all), but this tendency does eventually decay (thousands
of steps later).

We have now shown that leaders can affect the conver-
gence of simple systems through reward shaping, and that
admissible reward shaping in this setting allows the agent
to provide these bias payments for only a short amount of
time. Combined with the previous findings on reward shap-
ing improving convergence rates, these results are encourag-
ing, but our goal is to be able to influence a large MAS, not
only simple Bimatrix games. To that end, we now present a
case study of leadership in a super-peer network, a complex
file sharing system, where we will see the end results mirror
these lessons from Bimatrix games.



Super-Peer Networks: A Case Study
We now describe a case study with a much larger base game,
specifically a super-peer file-sharing network. Our specific
instantiation of this network contains two types of super
peers (the proxy agents in the file sharing scheme), one that
acts in a way that promotes global throughput and another
that acts greedily but hurts the system as a whole. We show
how different leaders can affect such a system, including sit-
uations where the leader needs to minimize its own costs.

Super-Peer Network Overview
In standard Peer-to-peer (P2P) systems, every machine
(called a peer) hosts data and this decentralization results in
desirable properties such as better reliability, improved scal-
ability, and availability (Milojicic et al. 2002). The standard
interaction in such a network is that peers submit queries
for a file to some other peers in the network, and if any of
these “neighboring” peers who either respond with a match
or propagate the query.

In this work, we consider a slightly more structured
P2P system called a super-peer network (Yang and Garcia-
Molina 2003) as illustrated in Figure 2 (SPN). This network
comprises two types of peers, weak peers (WP ) that hold
and trade all of the files and super peers (SP ) which hold
cached pointers to weak peer files and act as search prox-
ies for the weak peers. Specifically, super peers can respond
to local queries based on their own cache or global queries
which they forward to the larger system.

We will use an implementation of super-peer networks
close to the architectures described in the networking litera-
ture (Garbacki, Epema, and van Steen 2007). In this model,
each weak peer can pledge itself to one or more super peers
at each timestep, and those are the super peers it will send
its queries to, on that step. When a super peer s receives a
query from a weak peer, it first checks its own cache of files.
If the file is found, then it responds with the file pointer. Oth-
erwise, if the query is marked global, it forwards the query
to its neighboring super peers. In this work, since our leaders
will not be able to influence the topology of the super peers’
interconnection, we assume that the super peers are strongly
connected, so only one step of forwarding is needed. If the
file pointer is in any super peer’s cache, it provides super
peer s with the pointer, which s then sends to the original
weak peer. Notice that the super peers keep only pointers to
files, not the files themselves (which the weak peers handle).

p2p Network

weak-peer

super-peer

Leader

Figure 2: super-peer network structure

Agent Types, Utilities and Actions
We now describe the components of our super-peer network
implementation in terms of the base-game parameters men-
tioned earlier. We will begin by describing the agent actions,
utilities and types.

On every step, weak peers can choose up to 5 (in our ex-
periments) super peers to pledge to, and if the weak peers
are making a local query on this step (and don’t have pend-
ing queries), they send it to those super peers. If they make
a global query, it is sent to one of their super peers at ran-
dom. On every step, a super peer can (1) respond to a weak
peer’s query if it has the file in its cache or forward a global
search from a weak peer and (2) respond to a global search
from another super peer. If a new file pointer is seen by the
super peer as a result of a global search, it may also have to
decide how to store this pointer in its limited-size cache. Su-
per peers may have limited bandwidth (discussed in the next
section) and so may have to decide which queries to answer.

The choices in each of these actions (who to pledge to,
when to answer queries, how to update a cache) depend
on each agent’s own utility function. In our system, these
utilities will be governed largely by the subtype (categories
within the weak and super peer sets) of each agent. We con-
sider each weak peer to be of a semantic type τ ∈ T . The
set of types corresponds to the set of different file types be-
ing shared in the system. In our experiments, weak peers
will only request files of their own type, though in general a
multinomial distribution could be used to model more diver-
sified weak peers.

We also consider there to be two subtypes of super peers:
greedy and altruistic. Greedy super peers attempt to maxi-
mize the number of hits from their client’s requests in their
cache of file pointers. Because their cache is of limited size,
this often means deleting pointers to less popular (among
their clients) pointers in favor of more popular ones. Al-
though this greedy behaviour will boost the super peer’s
popularity locally, deleting these file pointers could be detri-
mental to the system’s performance. By contrast, altruistic
super peers seek to maximize the number of hits of their
clients’ requests but also guard against two possibly destruc-
tive cases: (1) They make sure file pointers they hold are not
overwritten without a copy being made and (2) they do not
store file pointers that exist elsewhere in the system. For the
first case, when they are asked for a global search, they reject
it if they do not have an empty slot in their cache. For the sec-
ond rule, if they receive a global search query from a super
peer that will copy the forwarded pointer, they delete their
own copy. At a high level, greedy super peers base utility on
the number of requests they manage to serve immediately
while altruistic super peers have a utility that also factors in
the performance of the system as a whole.

Resources and Attitudes
We now consider how the actions of different agents affect
the resources in the system and attitudes of other agents. The
set of resources (R) in an SPN are the files for the weak
peers, the file pointers for each super peer and the amount
of bandwidth for each super peer (how many requests it can



serve on each step). Each file has a type τ ∈ T , such as
movies, music, audio-book, etc. Based on the findings of
(Cholvi, Felber, and Biersack 2004), we use a Zipfian dis-
tribution over the type of each weak peer and the type of
each file in the system. This leads to a realistic skewing of
the file and weak-peer types: file types that are the most re-
quested are also the most prevalent. The file pointers are
held by the super peers (initially randomly assigned) and up-
dated based on their types (greedy or altruistic) as described
earlier. As for bandwidth, we assume for now that each su-
per peer has sufficient bandwidth to answer all its incoming
queries, though we will later consider a leader that can “cap”
this resource.

The decision by a weak peer i on which super peers to
pledge to are governed by their attitudes towards each super
peer j, αij . These attitudes are adjusted after each search
query by i to j in the following manner:

1. If j answers a local search successfully then αij is in-
creased by 1.

2. If j resolves a global search and is known to i success-
fully then αij is increased by 1, otherwise αij is newly
initialized.

3. If i was pledged to j and j rejects the request (because of
a bandwidth limitation), αij is decreased by 2.
The decisions by the super peers in responding to queries

only need to be dealt with when bandwidth is limited and
we assume here that the super peers randomly pick as many
queries as they can serve within their bandwidth limits (that
is they do not keep explicit attitudes towards weak peers). As
for updating their cache of file pointers, again following the
general outline of (Garbacki, Epema, and van Steen 2007)
we assume that every file pointer considered by a super peer
SP i has a score βif updated in the following manner.

1. When a weak peer does a local search for f , if f is already
in the super peer’s cache, βif is increased by 1.

2. When a weak peer asks for a global search from SP i, SP i
forwards the query to other super peers. Eventually an-
other super peer SP j responds to this query through SP i.
Then, if its cache is full, SP i removes the item with the
lowest βi, and replaces it with f and sets βif to maxjβij .
The interplay between actions, resources and attitudes can

lead to two important phenomena in the system that our
leadership agents will try to affect. First, the presence and
potential popularity of greedy super peers can lead to file
loss in the system in the sense that, if the only super peers
with pointers to a certain file are greedy, and that file is not
very popular, they all might overwrite that pointer in favor
of more popular files, therefore rendering the file inaccessi-
ble in the system. A second complex system-wide feature is
that of specialization. Because weak peers tend to pledge to
super peers that often have the files they are looking for, and
because super peers cache pointers that are popular among
their pledges, the system tends to trend (or converge) to a
specialized network where super peers cache mostly files of
and have pledges mostly from a single type (see (Garbacki,
Epema, and van Steen 2007)). In our experiments we no-
ticed that greedy peers tend to specialize towards only the
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Figure 3: Converged CMR (10 runs) for different combina-
tions of greedy and altruistic super peers (total 30).

most popular file types, altruistic super peers often choose
to act as niche stores, allowing weak peers of a less popu-
lar type to still find their files. Both of these phenomena can
have a strong effect on global throughput measures and we
will now see how a leader can improve such global measures
by controlling these system-wide properties.

Leadership in Super-Peer Networks
In general, our leaders will be trying to mitigate the effect
of greedy super peers in the system, by limiting file loss,
promoting specializations and otherwise trying to guide the
system to better global throughput. To show the effect of
greedy super peers without a leader’s intervention, we have
run experiments with different combinations of the altruis-
tic and greedy super peers (always a total of 30). As shown
in Figure 3, the system performs best when there are fewer
greedy super peers in the system.

We will consider two different utilities UL in our exper-
iments, limiting file loss and also minimizing the average
cache miss ratio(CMR) of the weak peers. The average CMR
of the system is an important performance metric in super-
peer networks, because a lower CMR means less average
time for a weak peer to wait until its query is resolved. Note
that if a query is missed, it has to be forwarded to all other
super peers in the network, which will take much longer than
if it hits in a pledged super peer’s cache. In other words, a
high CMR results in more global search, which means more
packet forwarding and lower throughput.

We will also experiment with different leader action sets
(AL) to improve the measures above. First, a leader can cap
a super peer’s bandwidth. This can be done either by restrict-
ing the percentage of requests that get through or the abso-
lute number, both of which we experiment with. This type
of action will be most helpful in changing the equilibrium
the system converges to, in this case hopefully improving
long term CMR or file loss statistics. For this type of action,
the leader limits the bandwidth of the greedy super peers
in the system for a limited period of time, hoping that this
will lower the weak peers’ attitudes toward the greedy super
peers and give the weak peers time to develop an appropriate
clientele.

We will also consider a leader that can block super peers
from queries on all but one semantic type. That is, based
on the cache contents or the traffic statistics of the super



peer, first determine that the super peer is more appropriate
to serve only a semantic type τi. Then, it can block all the
queries of the weak peers which are submitted to this super
peer, but are not of type τi.

Super-Peer Experiments
We now describe a number of experiments using variants of
the leadership strategies discussed above. Most of our ex-
periments will show the effect of these actions by a leader
that does not reason about its own cost for blocking or cap-
ping. But as a step towards performing such reasoning, we
will also study the performance of a leader that uses a math-
ematically derived approximation of an SPN to find the best
(lowest cost but still effective) bandwidth cap to use in a
given time interval.

The number of super peers and weak peers that we used in
our simulations are 30 and 300 respectively. We also defined
1800 files that are evenly and randomly distributed at the
beginning. There are 10 semantic types defined for the files.
The cache of super peers can accommodate up to 65 files,
and the weak peers store attitudes for up to 10 super peers,
pledging to the top 5. At the initialization, agent caches are
populated with random items.

Bandwidth Capping for Better CMR
In this experiment, we show how a leader can affect the con-
vergence of the system, leading to a better value for a global
metric on the system. There are 30 super peers in the sys-
tem, with 5 of them being greedy. Figure 4 (left) shows the
effect of a bandwidth capping leader that caps the percent-
age of targeted super peers at 70% of the number of requests
made to them, but only between steps 1000 and 2000. One
can see a leadership “bump” in this graph as the leader in-
tervenes (similar to what happened when the leader exited
in our Bimatrix experiments) and the system struggles to
adjust. However, the leader is able to push the system to
a better equilibrium, even though it exits after only 1000
steps. This is because that intervention leads many of the
niche weak peers (those with less popular semantic types) to
develop bad attitudes towards the greedy super peers (who
are unable to fulfill their requests). They then migrate to the
altruistic super peers, who cache many of their files which
are unpopular in general, but very popular within their type.
This in turn limits the file loss in the system, and leads to a
better CMR than if the system were run without a leader.

As empirical evidence that bandwidth capping by the
leader is enforcing specialization, leading to the lower CMR,
we define the speciality of a super peer as the fraction of files
in its cache that are of the most prevalent type in the cache.
We calculated the average specialty of both kinds of super
peers at initialization and after convergence. For greedy su-
per peers, specialty starts at .35 and increases to .63 with-
out the leader but reaches .86 with the leader. A similar ef-
fect (.35 to .50 without the leader, .71 with the leader) is
seen for altruistic super peers, though specialty is less pro-
nounced there, presumably because these super peers can af-
ford to specialize in two different niche file types. Note that
the choice of the points where the leader steps in and out,

Figure 4: Left:A bandwidth capping leader’s impact on the
system CMR (10 runs). The capping is only done in the
leader line between steps 1000 and 2000. Right: Perfor-
mance of a blocking leader (stepping in at time 1000 for 80
steps) that improves convergence (10 runs) of a system with
only altruistic super peers by enforcing specialization.

are arbitrary and we observed very similar results for differ-
ent intervention start-points, though an intervention length
of around 1000 steps seemed to be needed.

Forcing Specialization
Our next experiment shows how a leader can accelerate the
convergence of the system, even if it doesn’t improve the
asymptotic performance. Again, this mirrors prior work in
small-scale Bimatrix games. In this experiment, all the su-
per peers are altruistic and the leader uses its “blocking” ac-
tion as described earlier to force the all of the super peers
to accept only requests for file types that form a plurality in
their cache. Figure 4 (right) compares a system with such a
leader versus a leaderless version and compares their CMRs.
Again, the leader only intervenes for a short time– between
steps 1000 and 1080. With this subtle intervention, there is a
dramatic effect on the convergence rate– the system special-
izes almost immediately (and much faster than the leaderless
system) and maintains a low CMR (which has a direct rela-
tion to super peers’ specialization). We also explored leader
interventions for shorter and longer intervals, and noticed
that longer interventions did not particularly improve the
convergence rate but, for interventions shorter than 80 steps,
the system converges slower, but still faster than the case
with no leader.

An Expectation Model for Managing Cost
In the experiments shown above, the actions of the leader
were chosen by the experimenter, but ideally the leader
would be an autonomous agent making decisions to max-
imize its own utility function. However the state space of
that problem is very large due to the number of parame-
ters in our model, and search could be prohibitively long.
While one could use Monte Carlo simulation here (similar to
(Hung, Kolitz, and Ozdaglar 2011)) we will instead attempt
to decrease the parameter space by deriving a mathematical
approximation of the SPN. This model will provide a way
to choose actions relative to the parameterization of the sys-
tem thereby decreasing the state space of the problem. We
briefly describe this model below using the terms T , F , W
and S for the sets of semantic types, files, weak peers and



super peers in the system and lower case like fτ to signify,
for instance, the set of files of type τ .

To consolidate terms in our equations and reach useful
forms, the following assumptions were made: weak peers
ask only for files of their type, super peers index only files
of their type, there are equal numbers of each type of file,
all files are equally popular, and attitudes are never decre-
mented. Furthermore, in the empirical system weak peers
send their request to each super peer in the top half of their
cache in order of rank until the request is met or the list is
exhausted. The expectation of what super peers will be in
a weak peer’s cache would be very difficult and inaccurate
to calculate, as would their ranking. Instead, this model as-
sumes a weak peer could ask any super peer at any time, and
that the choice is probabilistic, such that the likelihood of
any super peer being chosen is weighted by the weak peer’s
attitudes toward him. So we can denote the probability of
weak peer i sending a request to super peer j as:

Pr t(Sj |Wi) =
αijt∑S
k αikt

(1)

Note, this will still converge to some small set of super-peers
receiving the majority of a weak peer’s requests.

With these simplifications, we can derive some useful val-
ues such as the expected CMR at time t. Weak peers generate
a request any time they aren’t waiting on a previous request,
or about every 2-6 timesteps. We will approximate this as
a static requesting probability Pr(req). Therefore the ex-
pected number of requests each turn would be Pr(req)·|W |.
The expected number of cache misses is more involved, and
depends on what file-types are being requested of whom.
The end result is (after some Pr(req) terms cancelled):

CMRt =
1

|W |
·
W∑
i

T∑
τ

[
Pr t(request τ |Wi)

·
( S∑

j

Pr t(Sj |Wi)·Pr(miss|Sj , τ)
)ω

2
] (2)

The summation term is the expected number of cache
misses, and is essentially the sum of the likelihoods of each
combination of file-type and super peer causing a miss,
weighted by the expected number of times such a combi-
nation will be chosen. The summation over super peers is
raised to the power ω/2 where ω is the weak-peer cache
size, because half the cache must fail to have the file be-
fore this is considered a cache miss. Two of the inner terms
are very simple: Prt(request τ |Wi) is either 0 or 1 and
Pr(miss|Sj , τ) is 1 or σ/|fτ |, dependant upon τ being of
the same type asWi or Sj respectively (where σ is the super-
peer cache size).

The third inner term was defined in (1) but requires more
explanation. Pr t(Sj |Wi) depends on Wi’s attitudes, αit,
but αit in turn depends on the previous probabilities of
Pr(Sj |Wi) because attitudes are only altered when a super
peer serves a request:

αijt = 1+

t−1∑
s=0

T∑
τ

Prs(req τ |Wi)·Prs(Sj |Wi)·Pr(hit|Sj , τ)

(3)

where Pr(hit|Sj , τ) = 1 − Pr(miss|Sj , τ). So Pr(Sj |Wi)
and αij are mutually recursive, and unfortunately cannot be
solved for closed form. Further cancellations will give us
two formulas, the probability that a weak peer requests from
a super peer of its own type, abbreviated Pr(same):

Pr t(same) =
|sτ |+NumHits

|S|+NumHits
(4)

And the probability it will choose a different type:

Pr t(diff) =
|sτ |

|S|+NumHits
(5)

Where:

NumHits =
B · |S|

|W | · Pr(req)
· σ
fτ
·
t−1∑
k

Prk(same) (6)

B here is a bandwidth cap, not shown in earlier derivations
for simplicity. Equations (4) and (5) are very useful, as they
can can be used to predict the number of requests a given
super peer is likely to get, and how that will be affected by
changing the bandwidth cap.

Bandwidth-Selecting Leader Results Now that our
leader has a way to determine how much force to apply to
cause a desired change in the system, we can test a band-
width selecting leader against fixed policy leaders. We again
experiment with a system containing 5 greedy super peers
and a leader who caps bandwidth, this time using an abso-
lute cap instead of a percentage. Additionally, such a band-
width cap will be treated as incurring a cost to the leader
equal to its difference from the expected number of request
a super-peer would receive uncapped. In terms of utility,
each leader wants to save at least 40 file pointers from being
lost at minimum cost to itself. Because most file loss occurs
at the beginning, the leader will intervene between times
1 and 200. We have empirically determined that approxi-
mately 40 file pointers can be saved in this time period if the
requests to greedy peers are halved. We gave this as back-
ground knowledge to the leaders. Two fixed policy leaders
are tested: a heavy-handed leader that and caps bandwidth
at 1 query/timestep, and a light-handed leader that just mini-
mizes its own cost by capping at 17 queries/timestep (where
18 is the expected number of requests to these super peers).
The bandwidth selecting leader takes the background knowl-
edge and uses Pr t(same) and Pr t(diff) to approximate the
effects of applying different bandwidth caps to these peers,
to determine the minimum cap that will halve greedy peer
requests.

The results of this experiment show that the heavy-handed
leader was indeed too forceful; it saved 62 file pointers from
deletion on average, and additionally caused a large increase
in CMR, all at a cost of (18 − 1) · 200 = 3400. The light-
handed leader only saved an average of 5 files, incurring a
cost of (18 − 17) · 200 = 200. The bandwidth selecting
leader, meanwhile, chose a bandwidth cap of 5, thereby sav-
ing an average of 39 file pointers from deletion while only
having a transitory effect on CMR and incurring a cost to
himself of (18− 5) · 200 = 2600.



Figure 5: Unique file pointers in super-peer caches (left) and
CMR (right). Averaged over 10 iterations.

One notable result of this experiment is the elevated CMR
due to the heavy-handed leader’s actions. This is an example
of how careless or uninformed leadership can have adverse
effects on the system. Our bandwidth-selecting leader used
only a simple binary search and did not directly calculate
the expected CMR, but with more sophisticated optimization
techniques a leader could use a similar model to choose not
only the bandwidth cap, but whom to cap, when to do it, and
for how long.

Future Work
We have laid out a general formulation of leadership in ma-
nipulating an MAS and empirically demonstrated the poten-
tial of leaders in both toy domains and a complicated file
sharing network, but there are many avenues of open re-
search ahead. First, a better theoretical foundation in which
to measure leadership is still needed, and general algorithms
that work across domain types (e.g. auctions and voting sys-
tems) require further study. Empirically, our success in lead-
ing SPNs could be further studied in P2P networks and also
in general patron-client interactions (Gellner and Waterbury
1977), which are a more general classification of the rela-
tionships in an SPN.

There are also a number of extensions to our leadership
game definition that warrant further investigation. For in-
stance, if multiple leaders are present (as is the case in many
market-design settings) leadership becomes a “game on top
of a game” between the two leaders for control of G. Also,
we have not explicitly reasoned about how the participants
in G might more directly interact with or try to deceive the
leader, though such actions are not prohibited by our general
definition. Finally, in this work we have assumed that the
leader is already aware of the intentions or at least the types
of different agents in G (as with the greedy super peers). In
general, however, players could be profiled (e.g. (Gruman
and Narayana 2008)) based on statistics on their behavior,
or even using some active exploration by the leader.

Conclusions
We developed a general formulation of leadership games
where a leader tries to influence an MAS to reach either
a better global optimum (with respect to the leader’s util-
ity function) or achieve convergence faster. We empirically

demonstrated this approach in simple Bimatrix games and in
a complicated P2P file sharing system where different lead-
ers were able to induce better cache miss ratios and speed
up specialization (and convergence). We also presented first
results involving a leader that uses an approximation of the
system to reason about the cost of its intervention.
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