
Efficient Learning of Action Schemas and Web-Service Descriptions

Thomas J. Walsh and Michael L. Littman
Department of Computer Science, Rutgers University

110 Frelinghuysen Road, Piscataway, NJ 08854
{thomaswa, mlittman}@cs.rutgers.edu

Abstract

This work addresses the problem of efficiently learning ac-
tion schemas using a bounded number of samples (inter-
actions with the environment). We consider schemas in
two languages— traditional STRIPS, and a new language
STRIPS+WS that extends STRIPS to allow for the creation
of new objects when an action is executed. This modifica-
tion allows STRIPS+WS to model web services and can be
used to describe web-service composition (planning) prob-
lems. We show that general STRIPS operators cannot be ef-
ficiently learned through raw experience, though restricting
the size of action preconditions yields a positive result. We
then show that efficient learning is possible without this re-
striction if an agent has access to a “teacher” that can provide
solution traces on demand. We adapt this learning algorithm
to efficiently learn web-service descriptions in STRIPS+WS.

Introduction
The termaction schemasrefers to a wide variety of tech-
niques and languages for modeling sequential decision mak-
ing problems. By describing action outcomes at a con-
ceptual level, action schemas (as depicted in Table 1) pro-
vide generalization beyond propositional models. However,
while machine-learning techniques for acquiring proposi-
tional action models have been widely studied in terms of
theoretical efficiency (via the notion ofsample complex-
ity), the results on learning action-schema models have been
largely empirical. The primary goal of this paper is to pro-
pose a provably efficient algorithm for learning descriptions
in the simple action-schema language, STRIPS.

The imperative to develop such algorithms has recently
gained traction in the real world with the proliferation of
web services, and the need to link together services to com-
plete complex tasks. Many researchers have attempted to
automate this process with planning techniques (Hoffmann,
Bertoli, & Pistore 2007), but they usually assume a stan-
dardized language describing the services, both in terms of
syntax and semantics. While popular protocols (e.g. REST,
SOAP) realize the former assumption, semantic standardiza-
tion is practically unachievable if we rely on the providersto
label content, especially if the services come from different
sources. Learning web-service behavior from examples is

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a pragmatic approach for constructing models for use with
existing planners in the midst of this semantic anarchy.

Our work exploits the connection between web-service
description learning and the classical problem of learning
action schemas. Both tasks can be described with simi-
lar languages, though web-service descriptions need to cap-
ture “object creation”. We consider learning in both of
these settings with the aid of a teacher that returns a “trace”
of grounded states and actions leading to the goal. Such
teachers have long been employed in empirically evaluated
action-schema learners (e.g. TRAIL (Benson 1996)). In this
paper we prove they provide an exponential speedup. We
also show this result can be ported to web-service learning
by extending STRIPS withfunctions(STRIPS+WS). Our
main contributions are providing positive and negative sam-
ple complexity results for learning action schemas and web-
service descriptions.

Learning STRIPS Operators
We first consider learning action schemas in the STRIPS
language (Fikes & Nilsson 1971). We show that learning
STRIPS operators through raw-experience can require an
exponential number of samples, but restricting the size of
the precondition lists allows for sample-efficient learning.
We then present an algorithm that interacts with ateacherto
efficiently learn STRIPS schemas.

STRIPS Operators
The STRIPS language describes domains where worldstates
are a conjunction of truegrounded fluents1 (e.g. On(b, c))
made up of a predicate from a set of sizeP , with parameters
drawn from a set of known objects,O. STRIPS actions are
parameterized, of the forma(X1,...,Xm), wherea is drawn
from a set of sizeA. Each action’s behavior is described by a
schema, made up of threeoperator lists, thePre-conditions
(PRE),Add-list (ADD), andDelete-list(DEL). Each list is
described byfluents, as in Table 1. ADD (DEL) describes
what fluents become true (false) as a result of an action,
while PRE governs whether the action willsucceedor fail.
We assume these latter outcomes are explicitly revealed as
actions are taken. Objects in STRIPS cannot be created or

1We refer to predicates over variables (On(X, Y)) as “fluents”
and their grounded form (On(b, c)) as “grounded fluents”.

destroyed and fluents in the preconditions must be positive.
Also, actions have a limitedscope; all variables referenced
in an action schema must appear in the action’s parameter
list. We assume that environments are deterministic, free
of conditional effects, all states are fully observable (nohid-
den/delayed outcomes), and the arity of all actions and pred-
icates are bounded byconstantsm andn, respectively. For
details on these terms see Russell & Norvig (1995).

STRIPS Learning Problem
At the beginning of learning, an agent knows what actions
are available and what predicates will be used to describe
states. Learning proceeds in episodes, and at the begin-
ning of each episode, an agent is presented with an initial
state,s0, and a goal description,G. s0 is a set of grounded
fluents andG is a conjunction of predicates whose parame-
ters come either fromO or are existentially quantified (e.g.
∃ X On(b,X) ∧ Block(X)). The agent is then free to take
grounded actions and the environment responds with either
fail or an updated state description. After reaching the goal
or declaring that the goal is unreachable, the agent starts a
new episode. The underlying schemas do not change be-
tween episodes, buts0, O, andG might.

Given a schema, well-studied planning techniques (Rus-
sell & Norvig 1995) can determine if the goal is reachable
and produce a correspondingplan (a sequence of grounded
actions,a0...ak). We assume throughout this work that
our planner is complete and providescorrect plans, that
is si+1 = (si ∪ ai.ADD−ai.DEL); si |= ai.PRE; and
sk+1 |= G. The goal of theSTRIPS learning problemis to
produce a set of STRIPS operators that when used by a com-
plete planner, will induce a correct plan, or correctly state
“no plan”. We wish to achieve this guarantee with a limited
sample complexity, a bound on the number of interactions
the learner must have with the environment to construct the
schema described above. In this work, we measure sample
complexity in terms ofplan-prediction mistakes(PPMs).

Definition 1. A plan-prediction mistakeoccurs when an
agent chooses a plan for a given episode that will not reach
the goal, or asserts “no plan” when the goal is reachable.

We say a learning algorithm isefficientin terms of sample
complexity if it makes a polynomial (inP andA, with con-
stantsm andn) number of plan-prediction mistakes. The
technique of limiting mistakes is a well known paradigm for
bounding sample complexity in learning (Littlestone 1988)
and sequential decision making (Kakade 2003). When a
mistake is made, the model needs to be refined using experi-
ence. Later, we consider how different forms of experience
affect the number of PPMs.

First, we discuss some complications of STRIPS learning.
Regardless of the channel of experience, the basic operation
that needs to be performed during learning is anoperator
updateon actiona’s operator lists based on an observed state
transition〈s, a, s′〉. Unfortunately, a single experience may
not be enough to pin down a fluentf ’s role in any of these
lists as we see in theoperator update rulesbelow that outline
how to updatea.PRE (Rule1) and the effect lists (Rules2-
5) when an action succeeds. Notice that several (not listed)

After first trace
move(B, From, To):
PRE: On(B, From) ,Clear(B) , Clear(From) ,Clear(To) ,
Block(B) , Block(To) , Table(From)
ADD: On(B, To)
DEL: On(B, B) , On(From, B) ,On(To, B) , On(B, From) ,
On(From, From) ,On(From, To) ,On(To, To) ,Clear(To) ,
Block(From) ,Table(B) , Table(To)

After second trace
move(B, From, To):
PRE: On(B, From) , Clear(B) , Clear(To) , Block(B) ,
Block(To)
ADD: On(B, To) ,Clear(From)
DEL: On(B, B) , On(From, B) ,On(To, B) , On(B, From) ,
On(From, From) ,On(From, To) ,On(To, To) ,Clear(To) ,
Table(B) , Table(To)

Table 1: Learned STRIPS action schemas from the blocks
world traces in theExample section. Variable names are
inserted for readability.

cases fora.PRE are uninformative by themselves, though
together they may be helpful.

1. If f /∈ s ∧ SucceedThen f /∈ a.PRE.
2. If f /∈ s ∧ f ∈ s′ Then f ∈ a.ADD, f /∈ a.DEL.
3. If f ∈ s ∧ f /∈ s′ Then f ∈ a.DEL, f /∈ a.ADD.
4. If f /∈ s ∧ f /∈ s′ Then f /∈ a.ADD.
5. If f ∈ s ∧ f ∈ s′ Then f /∈ a.DEL.

Further complications arise with parameterized actions
when the same object appears multiple times in an action’s
parameter list. For example, if the learner experiences the
action a(b, b) causingP(b), it is not clear whetherP(X)
or P(Y) (or both) should be inserted intoa(X, Y).ADD.
We propose avoiding such ambiguity by learning different
action-versions, that is, a separate operator is learned for
each pattern of matching parameters. The number of pos-
sible action versions scales, albeit combinatorially, with m,
which is constant and therefore doesn’t affect the theoretical
efficiency of learning (see Walsh & Littman (2008)).

Prior Work on STRIPS Learning
A number of prior works have focused on learning STRIPS-
like action schemas. EXPO (Gil 1994) was bootstrapped
by an incomplete STRIPS-like domain description with the
rest being filled in through experience. The OBSERVER
system (Wang 1995) also used a STRIPS-style language
and was trained with a mixture of both raw experience and
grounded expert traces. The TRAIL system (Benson 1996)
used Inductive Logic Programming (ILP) to distill schemas
from raw experience and a teacher. All of these early sys-
tems recognized and demonstrated the benefit of experience
beyond simple interaction with the environment (bootstrap-
ping, traces, teachers). However, none of these works pro-
vided a theoretical justification for this second channel of
experience (as we do), nor did they bound the sample com-
plexity of their learning algorithms. Our work provides a
theoretical groundwork for understanding the empirical suc-
cess of these earlier techniques.

In recent years, a number of systems have expanded
empirical schema learning results beyond basic STRIPS
operators. These include systems that modeled synthetic
items (Holmes & Isbell Jr. 2005) andprobabilisticSTRIPS
operators (Pasula, Zettlemoyer, & Kaelbling 2007) from
traces of behavior. These contributions yielded exciting ex-
perimental results, but in this work we are examining the
fundamental problems in schema learning, and thus we fo-
cus on simpler cases, particularly deterministic STRIPS and
web-service operators.

Other algorithms, such as ARMS (Yang, Wu, & Jiang
2005), and SLAF (Shahaf 2007), considered learning when
state information may be unseen or not immediately avail-
able, respectively. The SLAF research produced an al-
gorithm and derivedcomputationalbounds on its runtime
based on the type of language used (including STRIPS). In
contrast, we are considering learning in fully observable en-
vironments and are concerned with thesamplecomplexity
of learning, which is also of critical importance in practical
systems.

STRIPS Learning from Raw Experience
We first consider the STRIPS learning problem withraw ex-
perience, where at every step in an episode, the agent sends a
grounded action to the environment and receives back either
successand a new state (grounded fluents), orfailure (mean-
ing some precondition is not met). Note, the agent is not
told what precondition was not satisfied, and may face un-
certainty in the action’s effects. To better understand thein-
tricacies of this setting, we consider two special cases where
parts of the operator descriptions are knowna priori.

Case I: Preconditions Known In this case, the agent
knows ∀a, a.PRE, but nota.ADD nor a.DEL. Under
these conditions, an agent can use theoptimisticalgorithm,
STRIPS-EffectLearn (Algorithm1).

Lemma 1. STRIPS-EffectLearn can make no more than
O(APmn) PPMs in the “Preconditions known” case.

Proof sketch.Since the preconditions are known, the agent
does not have to worry about action failure. The schemas
maintained by STRIPS-EffectLearn are optimistic; they
treat any fluent whose membership ina.ADD or a.DEL is
uncertain as being ina.ADD. When experience provides in-
formation on a fluent w.r.t. an action, it can be marked Yes or
No based on update rules2-5 (but never back to Unknown).
PPMs can occur only if a plan invokes a state/action (s,a)
where all previous occurrences ofa took place with at least
one fluent ina.ADD or a.DEL having a different truth value
than it has ins. Since the number of Unknowns is initially
O(APmn) and each PPM eliminates at least one Unknown,
the total number of PPMs is bounded byO(APmn).

Case II: Effects known In this case,∀a, a.ADD and
a.DEL are known and the agent must learna.PRE. Unfortu-
nately, the environment only indicates success or failure (not
the cause), so fluents cannot be considered independently as
they were in the previous case, leading to the following neg-
ative result (proof available in Walsh & Littman (2008)).

Algorithm 1 STRIPS-EffectLearn

1: ∀a∀fAdd[a][f] := Delete[a][f] := Unknown
2: Construct a set of optimistic action schemas,A, (one for

each action) with the given preconditions and where
3: f ∈ a.ADD if Add[a][f] = Unknown OR Yes
4: f ∈ a.DEL if Delete[a][f] = Yes
5: for (s0, G) = nextEpisode()do
6: plan = PLANNER.makePlan(A, s0, G)
7: for eacha ∈ plando
8: s = current state
9: s′ = plan.nextState(s, a)

10: take actiona and receivenewState
11: if newState 6= s′ then
12: UpdateAdd andDelete, in case they changed,
13: Reconstruct the optimistic schema setA

14: plan = PLANNER.makePlan(A, newState,G)

Theorem 1. Learning the necessary STRIPS operators to
determine the reachability of a goal when the preconditions
are not known can requireΩ(2P) PPMs.

However, if we restrict the class of formulae permissible
as preconditions to conjunctions of lengthk or less, wherek
is a constant, we gain the following result.

Lemma 2. An agent in the “Effects known” setting can effi-
ciently learn precondition conjunctions ofk or fewer fluents
with no more thanO(A(Pmn)k) PPMs.

Proof sketch.We adaptSTRIPS-EffectLearnby construct-
ing an array for each action,Pre, of size

∑k

i=1

(

Pmn

i

)

=

O((Pmn)k) with all possible preconditionconjunctions
(valid hypotheses), all initially marked as Unknown. When
constructing an action schema, we use one of the hypothe-
ses that are marked as Unknown. If the planner returns “no
plan” for this hypothesis, we try another one marked Un-
known until we receive a plan, or run out of valid combina-
tions of hypotheses, at which point we correctly predict “no
plan”. We note this may require an exponential (inA) num-
ber of calls to the planner. If we have a plan, the algorithm
uses it, always predicting success. Upon failure, all the hy-
potheses that claimed the current state satisfied all precondi-
tions are marked No and the algorithm replans. Each failure
disproves at least one of the hypotheses marked Unknown.
This monotonic search yieldsO(A(Pmn)k) PPMs.

Combining the two positive results above, we can
show that STRIPS operators are efficiently learnable with
bounded size preconditions even when PRE, ADD, and DEL
are all initially unknown.

Theorem 2. The STRIPS learning problem can be solved
efficiently when the preconditions are guaranteed to be
conjunctions ofk or fewer fluents. Specifically, after
O(A(Pmn)max(k,1)) PPMs, an agent can be guaranteed to
always return a correct plan to the goal if there is one (or
“no plan” if there is none), with no further PPMs.

Proof sketch.The algorithms for the “Preconditions
known” and “Effects known” cases can be combined so

that the agent is always using optimistic schemas. At
every step, if an action fails or produces a different state
than planned, the agent updates its schema and replans.
As in the simpler algorithms, every PPM is guaranteed to
monotonically refine one action’s array entries. Ifk ≥ 1,
then the largest array is|Pre| = O((Pmn)k), otherwise it is
Add or Delete of sizeO(Pmn). Schemas must be learned
for all A actions, thus we obtain the desired bound.

We have shown that it is possible to efficiently solve the
STRIPS learning problem if∀a, |a.PRE| ≤ k. However, this
assumption may not naturally hold in environments with a
large number of predicates. Hence, we now consider a dif-
ferent form of interaction with the environment, where an
agent can ask a teacher for a trace showing how to reach
the goal in the current episode. Prior work has empirically
demonstrated such traces speed up learning. We now show
that the introduction of a teacher is also theoretically suffi-
cient for efficient STRIPS learning.

STRIPS Learning with a Teacher
We consider ateacherthat, givens0 andG, returns either
a plan for the current episode that will achieve the goal,
or “no plan” if the goal is not reachable. Our strategy in
this setting revolves around the use of apessimisticmodel
wherea.PRE anda.DEL contain all the fluents that have
not been disproved, and no fluents are ina.ADD unless di-
rectly evinced. Due to this gloomy outlook, the agent will
claim “no plan” anytime it cannotguaranteereaching the
goal. It will then query the teacher, which responds with
a trace showing grounded state/action pairs for the current
episode. The full learning algorithm, STRIPS-TraceLearn,
is described in Algorithm2. We note that unlike the raw-
experience case, all examples provided to this “bottom-up”
learner will be positive, allowing us to more deftly prune
the precondition hypothesis space (case1 from the operator
update rules), leading to the following theoretical result.

Theorem 3. STRIPS-TraceLearn solves the STRIPS learn-
ing problem efficiently in the presence of a teacher. Specifi-
cally, it makes no more thanO(APmn) PPMs.

Proof sketch.STRIPS-TraceLearn will only make plan-
prediction mistakes where the agent claims “no plan” and
the teacher returns a valid plan trace. The trace will eitherin-
dicate that a fluent in somea.ADD should be marked Yes or
some fluent ina.PRE ora.DEL should be marked No (oth-
erwise the agent would have discovered a valid plan itself).
The resulting pessimistic schema is always consistent with
all previous examples, since changes are only “one way”.
Thus, the number of changes, and therefore disagreements
with the teacher, is bounded byO(APmn).

This result, which is in line with earlier empirical find-
ings, shows there is a true theoretical benefit, in terms of
sample complexity, to interacting with a teacher rather than
learning STRIPS operators solely from raw experience. We
note that if the goal is always reachable froms0, the number
of requests to the teacher can be similarly bounded.

Algorithm 2 STRIPS-TraceLearn

1: ∀a∀fAdd[a][f] := Delete[a][f] := Pre[a][f] :=
Unknown

2: Construct a pessimistic action schema setA where
3: f ∈ a.PRE ifPre[a][f] = Unknown or Yes,
4: f ∈ a.ADD if Add[a][f] = Yes,
5: f ∈ a.DEL if Delete[a][f] = Unknown or Yes
6: for each episode (s0, G) do
7: plan = PLANNER.makePlan(A, s0, G)
8: if plan 6= “no plan” then
9: Execute the plan

10: else
11: trace = teacher.query(s0, G)
12: for each〈s, a, s′〉 ∈ tracedo
13: UpdateAdd, Delete, andPre.
14: reconstructA

Example
We now present an empirical result demonstrating STRIPS-
TraceLearn in Blocks World with four blocks (a,b,c,d), a
table (t), four predicates (On(X, Y), Block(X), Clear(X),
Table(X)), and two actions (move(B, From, To) andmove-
ToTable(B, From, T)). In the first episode,s0 has all the
blocks on the table and the goal is to stack3 blocks on
one another. The pessimistic agent, which initially thinks
every possible pre-condition constrains each action, reports
“no plan”, but the teacher responds with the plan: [move(a,
t, b), move(c, t, a)] The agent updates itsmoveschema to
reflect the new trace, as seen in the first schema in Table 1.

Next, the agent is presented with the same goal but an ini-
tial state wherea is on b andc is ond. Because it has not
yet correctly learned the preconditions formove(it believes
blocks can only be moved from the table), the agent reports
“no plan”, and receives a trace [move(c, d, a)], which in-
duces the second schema in Table 1. Noticemove.DEL still
contains several fluents that could never occur if the action
succeeds (so their deletion cannot be empirically refuted),
but otherwise the schema represents the true dynamics of
move. Now, the agent receives the same initial state as the
previous trace, but with a goal of∃ X, Y On(X, Y), On(Y, d).
Because the agent has learned themoveaction, it produces
the plan [move(a,b,c)]. Further experience could refine the
moveToTableschema.

Web Service Description Learning
We now consider the pragmatic goal of learning web-service
descriptions. Protocols like REST and SOAP have stan-
dardized web-service syntax, but efforts towardsseman-
tic standardization have largely failed. While the common
Web Services Description Language (WSDL) provides ba-
sic type information (integers, strings, etc.), most services
do not provide documentation beyond this. Even if they
do, the information may be out of date, and if one seeks
to link services from multiple sources, matching semantics
is unrealistic. For instance, if one service producesDog(X)
and another has a preconditionCanine(X), significant back-
ground knowledge is needed to infer a link between them.

This situation is unfortunate, because a number of recent
works (e.g. Liu, Ranganathan, & Riabov (2007)) have pro-
posed fairly efficient methods for planning or “composing”
web services with known semantics to achieve a goal. The
languages used in these works are very similar to the ac-
tion schemas we described earlier (preconditions, add-lists,
delete-lists). We seek to leverage this similarity to extend
our STRIPS learning algorithms to the web-service domain.
By learning our own semantic interpretation of service de-
scriptions, we parry the complication of missing or mis-
matched semantic descriptions.

STRIPS+WS for Web Services
One reason the basic STRIPS language is unable to model
standard web services, is that service responses often refer-
ence objects that were hitherto unknown to the agent. For
instance, a serviceairlineLookup(new york , paris) might
return a grounded fluentFlight(f107), wheref107 is com-
pletely new to the agent. This “object creation” problem
has forced planning researchers to enlist linguistic structures
such as exemplars (Liu, Ranganathan, & Riabov 2007). We
consider a fairly simple modification to STRIPS, the intro-
duction of functional terms, that allows us to model ob-
ject creation. That is, while STRIPS planners ground ev-
ery variable as some object,o ∈ O, our new language,
STRIPS+WS, allows planners to reason about variables
bound to functional terms. Schematically, this enhancement
only inserts functional terms intoa.ADD, so we label each
ith function associated with an actiona asfai. For instance,
in the airline example, we haveairlineLookup(Source, Dest)
→ ADD: Flight(fa1(Source, Dest)), wherea is short for
airlineLookup. We note that the add-list can contain flu-
ents that reference both new and old objects such asFlight-
From(fa1(Source, Dest), Source). STRIPS+WS also em-
bodies the following assumptions:

1. We extend the STRIPS scope assumption (objects in
a.PRE,a.ADD, and a.DEL must be parameters) to al-
low functions (fa1...faN) to appear as terms of fluents
in a.ADD. These functions refer to objects that have not
been seen before. In accordance with the STRIPS scoping
assumption, no action schema can reference a function
that is tied to another action, although the same function
may appear in multiple fluents in a single action’s ADD.

2. To keep the number of states finite, STRIPS+WS explic-
itly outlaws state descriptions where a function is nested
in itself. This constraint prevents a planner from consid-
ering an infinite sequence of new objects being created.

3. The ordering of fluents referencing new objects in the
state description is fixed. That is, if a state after action
a contains fluentsP(fa1(·)), P(fa2(·)), future occurrences
of the action cannot report a state asP(fa2(·)), P(fa1(·)).
This assumption is necessary to perform efficient and cor-
rect updates of the learned schema.

Web-Service Description Learning
Theweb-service description learning problemtakes as input
a set of predicates and actions and the maximum number of
new objects an action may produce,N . The goal of an agent

is again, when provided withs0 andG, either to produce a
valid plan to reach the goal or correctly report “no plan”.
We note that valid plans may contain functional terms (e.g.
P(fa1(obj1))) that will be replaced by real objects when the
agent actually executes the plan.

We note that the functions involved in these learned
schemas neednot be described in terms of their minimal
parameters. That is, for an actiona(X, Y, Z), all the func-
tions in the add-list can be written asfai(X, Y, Z), even if
they are only dependent on X. However, wedo need to be
concerned with matching functional terms that always pro-
duce the same objects. That is, ifa(X) always producesP(X,
NewObj) andQ(NewObj), we should represent both occur-
rences of NewObj with the same function (fa1(X)), as we
explore below.

Prior Work on Learning Web Services
A number of prior works have investigatedplanningin do-
mains involving web services. Recent work includes anal-
yses of planning tractability when new constants can be in-
troduced (Hoffmann, Bertoli, & Pistore 2007), a planning
system using RDF graphs as a representation (Liu, Ran-
ganathan, & Riabov 2007), and a study of the tractability
of web-service composition using more general Description
Logics (Baaderet al. 2005). All these languages and plan-
ners address the novel problem of representing new objects
created by services, usually with placeholders such as exem-
plars (Liu, Ranganathan, & Riabov 2007) or special output
variables (Hoffmann, Bertoli, & Pistore 2007). Our work is
complementary to these planners, because we build our own
operators from experience, and assume a planner exists that
can decide if our current model encodes a path to the goal.

Several empirical studies of learning web-service behav-
ior have been performed. Recent work leveraging back-
ground knowledge to semantically label inputs and out-
puts (Lerman, Plangrasopchok, & Knoblock 2006) produced
impressive empirical results. In work more akin to ours, ILP
techniques have been used to induce web-service descrip-
tions from examples, based on known descriptions of other
services (Carman & Knoblock 2007). Unlike their work,
which relies on heuristic search and the presence of enough
data to infer a description, our learning algorithm provides
a method for selecting samples from the environment and
bounds the number of such interactions.

Leaning STRIPS+WS with Traces and Experience
We now adapt STRIPS-TraceLearn to efficiently learn oper-
ators in STRIPS+WS when the agent has access to a teacher.
We focus on cases with access to traces because web-service
traces (as XML) are often easy to obtain.

To extend the STRIPS-TraceLearnalgorithm to
STRIPS+WS, we must deal with the ambiguity intro-
duced when function values overlap, as in the NewObj
example above. By default, the agent will assume that if
it has always seen the same new object in two places, that
the same function is producing them. This assumption is
optimistic and could lead to the agent claiming a plan will
reach the goal when it will not (example below). We will
use this optimistic approach (formalized in Algorithm3)

Algorithm 3 Updating Functional Terms
1: The first time actiona is seen, updatea.ADD using the

same function for objects with the same name.
2: for each instance ofa that is encountereddo
3: Compare each fluent containing a new object to its

schematic counterpart
4: if there are conflicts between the learned and ob-

served mapping of functions to objectsthen
5: Make new functions more finely partitioning the

conflicting objects and updatea.ADD

to distinguish functions using traces and raw experience,
while employing pessimism and traces to discover the
function-free contents of the operator lists.

As a concrete example, consider seeing actiona(obj1)
produce grounded fluentsP(obj1, newObj1) and
Q(newObj1). This instance would result in the learn-
ing algorithm producingP(X, fa1(X)) and Q(fa1(X)) and
inserting them intoa(X).ADD. However, in this example
there are really two functions, but in the previous instance
they just happened to reference the same object. This
representation could lead a planner to a PPM if another
actionb(X, Y) has preconditionsP(X, Y) ∧ Q(Y) and the
planner usesfa1(X) to fill Y . Such a mistake may not be
caught by the agent until it executesa and sees something
like P(c, d), Q(e). When this is seen, the procedure above
will change onefa1 term to a new function.

Theorem 4. Using STRIPS-TraceLearn and Algorithm3,
an agent in a STRIPS+WS environment with access to a
teacher can make no more thanO(A(N + Pmn)) PPMs.

Proof sketch.Learning can be done just as in STRIPS-
TraceLearn, and using the algorithm above to deal with new
objects. Each time an action succeeds, the same number of
predicates involvingnewobjects will always appear, and in
the same order (by our earlier assumption), so matching the
predicates up is trivial. The number of times new functions
need to be created is bounded byAN . O(APmn) PPMs
can occur as in the STRIPS case if the algorithm predicts
“no plan” at the initial state. But, anotherAN PPMs can
occur when the agent encounters an ambiguous function, as
above. When such a mistake is realized through experience,
the agent replans (as in the previous raw experience case),
and may claim “no plan”. At that point, the episode ends,
but a trace could be provided using the current state as the
initial state. Even if the teacher is only available ats0, this
type of situation only leads to anotherAN PPMs.

Conclusions
We proposed the first provably sample-efficient algorithms
for learning STRIPS action schemas and derived a lan-
guage and strategy for porting results to the web-service set-
ting. Future goals include extensions to richer languages
and a large scale empirical study. Our initial experiences
with Amazon Web Services (amazon.com/aws) suggest our
framework can be used successfully to learn to carry out nat-
ural tasks.

Acknowledgments
Work supported by DARPA/USAF through BBN contract
FA8650-06-C-7606. We also thank Alex Borgida for helpful
discussions.

References
Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter,
F. 2005. A description logic based approach to reason-
ing about web services. InProceedings of the WWW 2005
Workshop on Web Service Semantics (WSS2005).
Benson, S. 1996.Learning Action Models for Reactive Au-
tonomous Agents. Ph.D. Dissertation, Stanford University,
Palo Alto, California.
Carman, M. J., and Knoblock, C. A. 2007. Learning se-
mantic definitions of online information sources.Journal
of Artificial Intelligence Research30:1–50.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence5:189–208.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. InICML-1994.
Hoffman, J.; Bertoli, P.; and Pistore, M. 2007. Web service
composition as planning, revisited: In between background
theories and initial state uncertainty. InAAAI-2007.
Holmes, M. P., and Isbell Jr., C. L. 2005. Schema learning:
Experience-based construction of predictive action models.
In NIPS-2005.
Kakade, S. 2003.On the Sample Complexity of Rein-
forcement Learning. Ph.D. Dissertation, University Col-
lege London, UK.
Lerman, K.; Plangrasopchok, A.; and Knoblock, C. A.
2006. Automatically labeling the inputs and outputs of web
services. InAAAI-2006.
Littlestone, N. 1988. Learning quickly when irrelevant
attributes abound.Machine Learning2:285–318.
Liu, Z.; Ranganathan, A.; and Riabov, A. V. 2007. A plan-
ning approach for message-oriented semantic web service
composition. InAAAI-2007.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P.
2007. Learning symbolic models of stochastic domains.
Journal of Artificial Intelligence Research29:309–352.
Russell, S. J., and Norvig, P. 1995.Artificial Intelligence:
A Modern Approach. Prentice Hall, first edition.
Shahaf, D. 2007. Logical filtering and learning in partially
observable worlds. Master’s thesis, University of Illinois at
Urbana-Champaign.
Walsh, T. J., and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. Technical
report, Rutgers University, Piscataway, NJ.
Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
ICML-1995.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning action
models from plan examples with incomplete knowledge.
In ICAPS-2005.

