
Planning with Conceptual Models Mined from User Behavior

Thomas J. Walsh and Michael L. Littman
Department of Computer Science, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854

{thomaswa,mlittman}@cs.rutgers.edu

Abstract

This work considers the problem of learning to perform ef-
ficient sequential queries from traces of user behavior. We
define a restricted conceptual modeling language and outline
how to learn models in this language from behavior traces.
We then show how to plan instantiations of concepts in such
models and discuss how this planning is affected by different
optimality criteria. We examine simple example domains as
well as a real world domain involving Amazon web services.

Introduction
In this work, we consider the problem of an agent learn-
ing to perform an efficient sequence of “query operations”
(e.g. against a database or web services) in a complex do-
main from traces of user(s) performing queries in the same
domain. In the real world, the increasing availability of
web services for performing composite tasks such as mak-
ing travel arrangements and participating in auctions makes
this problem of particular interest to researchers. The use of
learning agents in these environments is particularly appeal-
ing as the diversity and changing functionalities that charac-
terize such domains make building and maintaining “hard-
coded” agents prohibitive. Although agents could poten-
tially learn about these environments through direct expe-
rience, the complexity of learning representations of these
domains without guidance is potentially burdensome. In-
stead, we focus here on a system that is provided with traces
of user queries (such as the one in Figure 1a involving a
simple flight reservation) and a simple modeling language
to develop a corresponding conceptual model. The goal of
the system is to create and execute a plan (which may be dif-
ferent than any instantiated plan in the example traces) that
results in a qualitatively judged instantiation of a goal con-
cept (e.g. reserve the cheapest flight). We describe an al-
gorithm, MOPLEX (MOdeling, PLanning, and EXecution),
that builds a conceptual model consistent with the trace do-
main using a restricted modeling language and then plans a
sequence of queries (which may require parameters from the
agent’s knowledge base) that will result in the instantiation
of the desired “goal concept”.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work, we give a detailed description of MOPLEX’s
modeling stage and identify our modeling language as a re-
stricted subset of a particular Description Logic. We then
discuss varying definitions of “optimality” for the planning
stage and how our choice of planning criterion affects both
behavior and computation. Throughout these discussions,
we refer to several small-scale “toy” examples, but at the
end, we show MOPLEX successfully modeling a complex
real world scenario involving the Amazon web services 1.

Related Work
Our approach is certainly not the first to combine the ideas
of conceptual modeling and planning. For instance, previ-
ous research has investigated using Description Logics (lan-
guages often used for conceptual modeling) with action for-
malisms (Baader et al. 2005) and extending relational rep-
resentations to the reinforcement-learning paradigm (Dze-
roski, De Raedt, & Driessens 2001). The problem we ad-
dress in this work differs because we wish to learn from user
traces and are concerned with acquiring and choosing spe-
cific instances of a concept based on some qualitative criteria
(e.g. the cheapest flight), rather than being given the goal in-
stance beforehand and planning at a completely conceptual
level. The subject of using a concept model learned from
an expert plan to induce a general rule-based policy has also
previously been addressed (Martin & Geffner 2004). Al-
though we are also learning a conceptual model based on
user behavior, our approach builds a model of the dynamics
of its environment and can therefore discover better policies
than the ones used in the trace. Our approach is also robust to
action failure, has defined rules for choosing between multi-
ple instances of a concept, and uses a more restricted set of
constructors than this related work.

The problem we have described is also closely related
to the field of workflow induction (van der Aalst & Wei-
jters 2004), which attempts to model real-world processes
by analyzing user behaviors. Almost all the works in this
field have employed a variant of the Petri Net (Murata 1989)
data structure as their base model, including Workflow-
Nets (van der Aalst, Weijters, & Maruster 2004), Time Inter-
val Petri Nets (Bulitko & Wilkins 2005), and ADONIS Petri
Nets (Herbst 2000). These different data structures provide

1http://www.amazon.com/aws

TripPlan
2

Reservation
3

Traveler
0

TripBetween
1

DestCity
1

StartCity
1

CitiesAndRadius
1

FlightAndPrice
2

Flight
2

FlightSource
2

CityName
2

Airline
2

FlightNum
2

Price
2{25, 50}

0

Number

FlightLookup

TravelerInfo

CityLookup

ReserveFlight

(a) (b)
Figure 1: (a) A sample trace of user queries. (b) The mined conceptual model, along with instantiation costs. Labels were
chosen for human readability and were not automatically generated.

varying levels of expressiveness, and often require powerful
machine-learning techniques such as genetic algorithms, de-
cision trees, and statistical data mining to learn the “rules”
that govern the behavior of the workflow. While this work
in learning Petri Nets has garnered several interesting em-
pirical results, such as accurate prediction of fire spreading
patterns (Bulitko & Wilkins 2005), only a few theoretical re-
sults have been produced (Agrawal, Gunopulos, & Leymann
1998; van der Aalst, Weijters, & Maruster 2004). The focus
of this paper differs from the previous workflow induction
works in that it is concerned with modeling structured data
with a Description Logic (as opposed to the largely proposi-
tional Petri Net), considers only a simple set of firing rules
(ANDs of parts or a query execution), and considers the
problems of planning and executing using these models after
they have been learned.

Modeling
We first define the modeling language used by MOPLEX.
We then describe how to learn models of this form from user
traces.

Conceptual Syntax and Semantics
Conceptual models, which describe environments in terms
of concepts and relations, are used in many facets of com-
puter science (Mylopoulos 1998). The complexity of rea-
soning with such models varies greatly with the set of con-
structors allowed for building concepts. In MOPLEX, we
used a constructor set corresponding to a restricted subset
of the Description Logic ALO (Baader et al. 2003) (con-
structors for conjunction (u), role range restrictions (∀), and
special versions of set enumeration (oneOf) and a version
of part-whole (⊕)). Formally, the modeling language em-
ployed by MOPLEX can be written as:

C ← T |Cp|C u C|(∀R.C)|oneOf{zi...zn}| ⊕ C

R← Rp|hasParti
where zi...zn are grounded numbers (that is we allow con-
cepts based on individuals only when those individuals are
numbers). The special ⊕ constructor can be translated logi-
cally as:

C ≡ ⊕C ′ ≡ ∃hasParti u ∀hasParti.C
′

In other words, a concept C has part C ′ if the existence of
its hasParti role is required and all of the fillers of this role
must be of type C ′. Notice that such a constructor has a dif-
ferent meaning than intersection (which is often intuitively
confused with the notion of parts) because intersection de-
fines a concept that is a refinement of (subsumed by) other
concepts (e.g. Father ≡ Parent uMale).

While this language can capture a domain at a conceptual
level (“Employee” rather than “Alice”), we will find it neces-
sary throughout this work to reason about specific instances
of a concept. An interpretation of a concept, denoted CI , is
the set of instances from the interpretation of a domain, ∆I ,
that are described by the concept C (CI ⊆ ∆I). We say a
concept C covers an instance i iff i ∈ CI . In this work, we
will often need to pick a specific instance from this interpre-
tation and bind it to the concept for the purpose of planning.
We will refer to a concept that has participated in such a
binding as instantiated.

Other than the special part-whole relationship, all other
relations in the modeling language above can be thought of
as “query relationships” that link the input and output con-
cepts for the queries in the user trace. We settled on this
modeling language because it sufficiently captured our ex-
ample domains while maintaining tractability in the oper-
ations needed to build and plan using the resultant model.
We mark concepts that are defined solely by the “one-of”
constructor as enumerable and those that have one or more
parts defined by the “one-of” constructor as partially enu-
merable. In order to accomplish our goal of finding the
“best” instance of a goal concept, the base conceptual model
is augmented using rules mined from the user trace. While
the system used in the running example uses only a simple
rule-mining algorithm (decide if bigger or smaller numbers
are preferred), more complex data-mining algorithms could
be used to mine richer rules.

Model Construction
The construction of the model itself is accomplished using
the following algorithm. Throughout this delineation we
will refer to the example in Figure 1.

1. Begin with a concept library containing all primitive con-
cepts that define known instances (Traveler in our exam-

ple) and a special Number concept.
2. Check the concept library for a concept whose parts cover

the non-numeric parameters of the query. The system as-
sumes that the only parameters for a query it will see will
have come from another query’s output, or be numeric. If
a covering concept exists, call it the “input concept”. Oth-
erwise, if the query already has a known “input concept”
that does not match the current parameters (a possibility
if many prior queries can produce the input concept), then
“merge” the parts of the two concepts that are common to
this query. If neither of the above scenarios apply, then
create a new input concept with a part for each input pa-
rameter.
Example: ReserveFlight(T1, Fnum2, F2 Airport, Dest1)
requires us to have a concept that covers {⊕Traveler u
⊕FlightNumu⊕FlightSourceu⊕DestCity} . Since
no such concept exists, the concept TripPlan is created
with exactly that definition.

3. If the query parameters contain a number and the in-
put concept is not marked as partially-enumerable then
create a new input concept defined as oldInputConcept
u⊕ oneOf{n} where n is number and ⊕ is the “part-of”
constructor. Mark this new input concept as partially-
enumerable and the “oneOf” concept as enumerable. If
the corresponding concept already exists, add the numeric
parameter to the enumeration list if it does not already re-
side there.
Example: FlightLookup(City1, Dest1, 25). From prior
queries we already have the concept TripBetween ≡
(⊕StartCity u ⊕DestCity) but the numeric attribute
(25) necessitates the construction of a different in-
put concept CitiesAndRadius = ⊕TripBetween u
⊕oneOf{25}.

4. If the output of the query was not empty, check the con-
cept library for a concept whose parts cover the non-
numeric instances in the output. If no such concept exists,
create a new one defined with parts corresponding to the
output instances’ concepts (which may themselves force
the creation of new primitive concepts since we may not
have seen them before). This check is essentially the same
as the one used in the input concept rule, but the new con-
cept parts may not already be associated with concepts
and the resulting concept is marked as the output concept.
Example: TravelerInfo(T1) → [City1, Dest1]. Since
City1 and Dest1 are not instances of any known con-
cept, we create new primitive concepts to cover them,
StartCity and DestCity and create the new concept
TripBetween ≡ ⊕StartCity u⊕DestCity as the out-
put concept.

5. If the output instance contains a number, make a new out-
put concept with two parts, the previous output concept
and a hyponym of the Number concept. This new concept
is then designated as the output concept.
Example: FlightLookup(City1, Dest1, 50) → [Fnum1,
AirCanada, F1 Airport, 1200].... The previous step,
would have created the Flight concept, which covers the
non-numeric parts, but the “1200” attribute needs to be

associated not with a specific flight, but with the asso-
ciation between the flight and the traveler (it’s a price
that may change). To model it, we create the concept
FlightAndPrice ≡ ⊕Flight u ⊕Price with Price v
Number.

6. If the input/output concept pair is new, add a restriction
on the fillers of the role name associated with the query to
the input concept (∀ queryName.OutputConcept).
Example: FlightLookup(City1, Dest1, 50) → [...]. The
input and output concepts of this query have been de-
termined by previous rules to be CitiesAndRadius and
FlightAndPrice, respectively. Now, we augment the
CitiesAndRadius definition to include the FlightLookup
role, that is CitiesAndRadius ≡ ⊕TripBetween u
⊕oneOf25, 50 u ∀FlightLookup.F lightAndPrice.

7. Finally, if multiple instances of the output concept exist,
then look ahead in the trace to see which one of these
instances are used first. Create a simple rule based on
the numeric attributes of this concept (prefer either small
or large numbers) that augments the output concept, al-
lowing MOPLEX to choose between multiple instances.
These rules are outside the scope of the conceptual mod-
eling language we have described and should be thought
of as augmenting the concept model, rather than being an
actual part of the modeling engine.
Example: FlightLookup(City1, Dest1, 50) → [Fnum1,
AirCanada, F1 Airport, 1200], [Fnum2, Delta,
F2 Airport, 800]. There are two instances of the
output concept FlightAndPrice, so we need a rule
that would allow a planning agent to decide between
them. Looking ahead in the trace, we see that Fnum2
and F2 Airport are used next before any of the other
associated pieces of either instance, so we conclude
that the second instance is preferable to the former, and
augment the concept definition of FlightAndPrice with a
rule “favor instances with smaller fillers of the Price part”
(that is, choose the cheapest flight first).

The end result of this modeling in our simple example is
depicted in the UML diagram in Figure 1b.

Planning
We now consider three different types of planning criteria
that could be used to instantiate a goal concept in a concep-
tual model mined by MOPLEX. These techniques should
be thought of as modular components that can be used de-
pending on the criteria the user wishes to minimize. The
first criterion assumes that each query will succeed, but that
every query has a cost, and attempts to minimize the total
cost. The other two criteria considered are probabilistic in
nature, one that tries to minimize the expected cost given
that queries may succeed or fail, and one that simply tries
to minimize the probability of failing at all. In all cases, we
assume that some non-empty set of concepts (e.g. Traveler)
is already instantiated and that the goal concept is known.

Minimizing Query Costs
The first planning case we consider is one where every query
has a cost and query failure is not anticipated. If all query

TripPlan
2

Reservation
3

Traveler
0

TripBetween
1

DestCity
1

StartCity
1

CitiesAndRadius
1

FlightAndPrice
2

Flight
2

FlightSource
2

CityName
2

Airline
2

FlightNum
2

Price
2{25, 50}

0

Number

AceFlightLookup

TravelerInfo

CityLookup

EZReserveFlight

CitiesAndMaxPrice
1

{500, 1500}
0

FlightPriceAceId
2

AceId
2

RedBaronFlightLookup

AceTripPlan
2

AceReserveFlight

(1.0)

(500, .8), (1500, .9)

(25, .75), (50, .85)

(.8)

(.8)

(1.0)

(a) (b)
Figure 2: (a) A probabilistic travel-reservation domain. Query success probabilities are conditioned on their numeric param-
eters. The values in the concept boxes are from the non-probabilistic “Minimize Query Cost” criterion. (b) A portion of the
Expectimax tree corresponding to this environment. In this domain, Expectimax will choose to use the AceFlightLookup(...50)
because the success of this query will provide two chances to complete the task, making the expected cost of this query smaller
than RedBaronLookup(...1500), which has a higher single step success probability. The “minimize probability of any failures”
criterion leads to the latter choice.

costs are equal, planning in this case reduces to finding the
fastest way (smallest number of queries) to instantiate the
goal concept. In either case, this task can be accomplished
by viewing the conceptual model itself as a graph and con-
sidering a moving “frontier” of instantiated nodes starting
with only the initially instantiated primitive concepts. Effec-
tive planning in this setting requires a set of rules for how to
instantiate nodes in the graph and a notion of cost for instan-
tiating these nodes. In MOPLEX, the costs are associated
with the three edge “types”:

1. Whole to Part: If a concept is instantiated then all its
parts and conjoined primitive components can be instan-
tiated with cost 0.

2. Parts to Whole: If all the parts and conjoined primitive
components defining a concept are either instantiated or
enumerable, then that concept itself can be instantiated
with cost 0.

3. Queries: A concept at the end of a “query edge” can be
instantiated by adding that query to the plan as long as the
concept the edge emanates from is marked as instantiated.
The cost added to the plan by this edge is equal to the cost
of the query.

The query cost structure could easily be conditioned on the
numeric parameters as well (FlightLookup(...25) costs less
than FlightLookup(...50)), which would allow the agent to
choose parameters as well as queries. For simplicity, we
ignore this aspect, and simply assume the agent chooses
numbers in the order they appear in the enumeration list,
though we deal with the parameter choice issue in subse-
quent probabilistic planning settings. With the cost structure
laid out above, planning is done using a variant of breadth-
first search in the concept lattice itself. Examples of total
costs calculated using single step query costs of 1 for all
queries in the travel-reservation domain appear in Figure 1b.

Minimizing Expected Cost
Our next two planning criteria are for the probabilistic plan-
ning setting, where each combination of query numeric in-
put (e.g. FlightLookup, 25) is annotated with a probabil-
ity that such a query call leads to a successful instantiation
of the output concept. That is, if a call to a query with a
given numeric parameter returns null, we consider the pre-
vious call to be a failure. Otherwise it is a success. We
assume once a query succeeds or fails with a given set of
parameters, the outcome will always be the same with that
set. Since we are conditioning probabilities based on the pa-
rameters, we allow the agent in the probabilistic setting to
choose numeric parameters for queries (from concepts built
with the oneOf constructor). The success probabilities can
easily be mined from user traces, giving us a probabilistic
version of the conceptual model. Figure 2(a) provides an
example of such a model based on an expansion of the ear-
lier domain where there are now two ways to look up a flight
(the Ace query or the Red Baron query, representing two dif-
ferent services). There are also two ways to reserve a flight
(Ace and EZ) but only flights looked up through Ace can
be booked by Ace. Each of those queries has a certain suc-
cess probability given their numeric parameters, as depicted
in the diagram. We assume in this work that the outcome
of a query is independent of other queries, an assumption
that will probably be violated in real life, but whose effects
are somewhat mitigated by the conditioning on parameters
(which are indirectly linked to future success). Conditioning
probabilities on query/number pairs also has the effect of en-
couraging the system to seek the best parameters as well as
the best queries.

In this probabilistic setting, using the same cost structure
as defined in the previous section, we now consider the prob-
lem of minimizing expected cost. Unfortunately, this setting
forces us to consider all combinations of query success and
failure possibilities. One way to look at this problem is to
consider a possible worlds model, that is, a set of possible

interpretations of the conceptual model, one for each pos-
sible setting of success or failure on each query relation.
When viewed in this light, the problem lends itself to the
search algorithm, Expectimax (Russell & Norvig 2002). Ex-
pectimax works by building out a tree of choice and chance
points. A piece of such a tree corresponding to our example
is provided in Figure 2(b). At the choice points, the agent
must select from a set of actions, whose expected values are
computed from the bottom (termination) up, corresponding
to our agent choosing which query to use and with which
numeric parameters. At the chance nodes, a probabilistic
event occurs that shapes the agent’s expected value from
that point forward. This event corresponds to the success
or failure of a query as defined above. In terms of the pos-
sible worlds model, these chance points determine which of
the possible worlds the agent really is in. Expectimax can
be used to determine the minimal expected cost strategy for
the instantiation of a conceptual model with parameters as
defined as above. In the probabilistic travel-reservation do-
main, Expectimax’s first attempt to flight lookup is an Ace-
FlightLookup with a radius of 50. If this lookup succeeds,
it will then have two chances to book this flight, keeping
the expected cost low. We note that this strategy does not
maximize the probability of zero failures, a topic we will re-
turn to shortly. Unfortunately, the runtime of Expectimax is
exponential in the size of the model, and therefore not prac-
tical for large domains. We now investigate a more practical,
though less thorough, probabilistic criterion.

Minimizing Probability of Any Failure
In light of the computational burden mentioned above, we
turn our attention to a computationally easier planning prob-
lem in the probabilistic setting, determining the strategy that
is least likely to see any failures. That is, we assume a sin-
gle failure truncates the search tree above, and do not con-
sider decision making after this failure. While this crite-
rion does not necessarily lead to intuitively optimal behav-
ior, it does lend itself to an efficient algorithm for gener-
ating such policies. Specifically, one can use a variant of
breadth first search that keeps track of the maximal proba-
bility (maximized over numeric parameters) at each concept
that it plans to instantiate. This approach generally ignores
the cost of queries, since query failure is assumed to lead
to an infinite cost trap, but the smallest cost path can be
used as a tie breaker in this scenario. In the probabilistic
travel-reservation domain, this criteria will lead the agent to
use Red Baron FlightLookup with a max-price of 1500 (a
different choice then Expectimax), because this choice will
maximize the probability of having no failures.

Execution
In the execution phase, MOPLEX attempts to run the plan
produced in the previous phase. During execution, the sys-
tem tries each of the planned queries, keeping track of the
instantiated concepts, reacting when a query comes back
empty, and choosing between instances when multiple in-
stances of a concept exist. Query failure may require replan-
ning using an updated model and whatever planning criteria

were used in the original planning phase. MOPLEX chooses
between multiple instances of a concept using the simple
rules trained in the modeling phase or, in the case of instanti-
ating an enumerable part, chooses the first number in the list
not yet tried on this instantiation of the node (planning with
query costs) or using the best probabilistic choice of parame-
ter (probabilistic planning criteria). It then continues execut-
ing the queries in the plan using the chosen instance. Finally,
if a planned query comes back empty, MOPLEX uninstanti-
ates the nodes that brought it to this point in “causal order”.
That is, it uninstantiates each concept on the path to the con-
cept that caused the failure, also uninstantiating any parts of
such concepts along the way. This process continues until
MOPLEX backtracks to a point where it chose one instance
over another, either by rule or by choosing a number from
an enumeration list and then replanning.

Web Services: An Application
As mentioned in the introduction, the recent proliferation of
web services and other internet API’s has provided a fertile
experimental landscape for agents, like MOPLEX, that can
model and reason about parameterized queries. MOPLEX’s
modeling engine, in particular, makes it well suited for the
ever changing landscape of the world wide web, where
changes often occur faster than adequate conceptual mod-
els are made available. Therefore, we considered a small
problem involving the Amazon Web Services. The only in-
stantiated concept at the onset is an email address for an
Amazon user. The goal of the system is to look up the corre-
sponding user’s wish list, pick the item which the user wants
in the highest quantity, and get these items at the cheapest
cost. We used the simple Query Cost criterion in this set-
ting and created sample traces by hand. The learned concep-
tual model for this domain, with planned costs, is provided
in Figure 3 (some non-essential parameters are omitted for
simplicity of presentation). The path MOPLEX chooses in
this scenario bypasses the unnecessary CustomerSearch and
CustListLookup queries. The success of MOPLEX in this
real world domain motivates future work on more complex
problems using Web Services.

Conclusions and Future Work
In this work, we have proposed a system, MOPLEX, for
learning a conceptual model of a domain from user traces
and then planning and executing tasks in that domain. We
have couched our system in the literature on learning con-
ceptual models, particularly the field of Workflow Induc-
tion/Process Mining. We have given an algorithm for min-
ing a conceptual model expressed in a particular Description
Logic from traces. We discussed several criteria for evalu-
ating plans in such domains, with and without probabilistic
effects. After evaluating MOPLEX in two simple travel ar-
rangement scenarios, we showed the ability of MOPLEX to
model a real world scenario involving a series of calls to
Amazon Web Services.

The work we have presented here is still, in large part,
preliminary. There are various extensions that we are con-
sidering to enhance the expressiveness and applicability of

Email
0

CustID
1

Customer
1

ListID
1

ListSearch

ListItem
2

Quantity
2

Item
2

Title
2

ItemID
2

Offer
3

Price
3

Condition
3

Merchant
3

MerchantID
3

MerchantURL
3

Cart
4

CartID
4

PurchaseURL
4

CustomerSearch

CustListLookup

Order
3

CreateCart

ItemLookup

Number

Nickname
1

ListLookup

(a) (b)
Figure 3: An example (a) trace and (b) conceptual model mined from users browsing and buying items off of Amazon WishLists.
The planning costs use the “minimize query cost” criterion. Labels were chosen for human readability, though in this example,
suitable labels could potentially have been mined from the XML documents passed by the Web Services.

the system. First, we would like to investigate using more
expressive modeling languages than the current construc-
tor set. The current restricted constructor set was chosen
because it models all the problems we have considered so
far and still allows for efficient conceptual reasoning (i.e.
subsumption reasoning). In addition, we plan to investi-
gate more powerful data mining techniques to uncover more
complex preference rules than the simple number based sys-
tem used now (e.g. judging offers on their price and condi-
tion). We will also investigate more planning criteria than
the three investigated in this work, again focusing on the
tradeoff between “optimality” and computation. Particu-
larly, we wish to consider more moderate truncations of the
Expectimax tree than the “minimize probability of any fail-
ure” criteria, which essentially truncated the tree after every
failure. Finally, we are looking into deploying MOPLEX in
more complex real world domains using web services.

Acknowledgements
We would like to acknowledge the support of DARPA IPTO
in this effort as well as the Integrated Learning project team,
whose examples motivated our research in this area. Finally,
we thank Alex Borgida for many helpful conversations on
conceptual modeling.

References
Agrawal, R.; Gunopulos, D.; and Leymann, F. 1998. Min-
ing process models from workflow logs. In International
Conference on Extending Database Technology, 469–483.
London, UK: Springer-Verlag.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Hand-
book: Theory, Implementation and Applications. Cam-
bridge University Press.
Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. In AAAI-05.

Bulitko, V., and Wilkins, D. 2005. Machine learning for
time interval Petri nets. In Australian Joint Conference on
Artificial Intelligence, 959–965. Springer-Verlag.
Dzeroski, S.; De Raedt, L.; and Driessens, K. 2001. Rela-
tional reinforcement learning. Machine Learning 43(1):7–
52.
Herbst, J. 2000. A machine learning approach to work-
flow management. In European Conference on Machine
Learning, 183–194. London, UK: Springer-Verlag.
Martin, M., and Geffner, H. 2004. Learning generalized
policies from planning examples using concept languages.
Journal of Applied Intelligence 20:9–19.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE 77(4):541–580.
Mylopoulos, J. 1998. Information modeling in the time of
the revolution. Information Systems 23(3–4):127–155.
Russell, S. J., and Norvig, P. 2002. Artificial Intelligence:
A Modern Approach. Prentice Hall, second edition.
van der Aalst, W. M. P., and Weijters, A. J. M. M. 2004.
Process mining: A research agenda. Computers in Industry
53(3):231–244.
van der Aalst, W.; Weijters, T.; and Maruster, L. 2004.
Workflow mining: Discovering process models from event
logs. IEEE Transactions on Knowledge and Data Engi-
neering 16(9):1128–1142.

