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Abstract

Lexicographic preference models (LPMs) are an intuitive representation that cor-
responds to many real-world preferences exhibited by human decision makers.
Previous algorithms for learning LPMs produce a “best guess” LPM that is con-
sistent with the observations. Our approach is more democratic: we do not commit
to a single LPM. Instead, we approximate the target using the votes of a collection
of consistent LPMs. We present two variations of this method—variable voting
and model voting—and empirically show that these democratic algorithms outper-
form the existing methods. Versions of these democratic algorithms are presented
in both the case where the preferred values of attributes are known and the case
where they are unknown. We also introduce an intuitive yet powerful form of
background knowledge to prune some of the possible LPMs. We demonstrate
how this background knowledge can be incorporated into variable and model vot-
ing and show that doing so improves performance significantly, especially when
the number of observations is small.
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1. Introduction

Lexicographic preference models (LPMs) are one of the simplest yet most in-
tuitive preference representations. An LPM defines an order of importance on the
variables that describe the objects in a domain and uses this order to make pref-
erence decisions. For example, the meal preference of a vegetarian with a weak
stomach could be represented by an LPM such that a vegetarian dish is always pre-
ferred over a non-vegetarian dish, and among vegetarian or non-vegetarian items,
mild dishes are preferred to spicy ones.

Despite the simplicity of lexicographic LPMs, several studies on human deci-
sion making [4, 20, 9] experimentally demonstrate that humans often make deci-
sions using lexicographic reasoning instead of mathematically more sophisticated
methods such as linear additive value maximization [6].

Previous work on learning LPMs from a set of preference observations has
been limited to autocratic approaches: one of many possible consistent LPMs is
picked heuristically and used for future decisions. However, it is highly likely that
autocratic methods will produce poor approximations of the target when there are
few observations.

In this paper, we present a democratic approach to LPM learning, which does
not commit to a single LPM. Instead, we approximate a target preference using
the votes of a collection of consistent LPMs. We present two variations of this
method: variable voting and model voting. Variable voting operates at the variable
level and samples the consistent LPMs implicitly. The learning algorithm based on
variable voting learns a weak order on the variables, such that each linearization
corresponds to an LPM that is consistent with the observations. Model voting
explicitly samples the consistent LPMs and employs a weighted vote, where the
weights are computed using Bayesian priors. The additional complexity of voting-
based algorithms (compared to autocratic methods) is tolerable: both algorithms
have low-order polynomial time complexity. Our experiments show that these
democratic algorithms outperform both the average and worst-case performance
of the state-of-the-art autocratic algorithm.

We also investigate the effect of imperfect data on the learning algorithms. We
consider two kinds of imperfections: faulty observations (noise) and hidden ties
(ties that are broken arbitrarily). Our empirical evaluation demonstrates that all
of the algorithms we consider are robust in the presence of hidden ties. However,
even a small number of faulty observations significantly reduce the performance
of the voting algorithms. On the other hand, the greedy algorithm is resilient: that
is, the performance decline is proportional to the amount of noise in the data. We
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take a lesson from this, and adapting the voting methods to consider the amount
of noise in an environment, we empirically show the resulting heuristic is on par
with the greedy approach in the case of noisy observations.

To further improve the performance of the learning algorithms when the num-
ber of observations is small, we introduce an intuitive yet powerful form of back-
ground knowledge. The background knowledge defines equivalence classes on
the variables, indicating the most important set of variables, the second most im-
portant set, and so on. This representation permits a user or designer to provide
partial information about an LPM (or a class of LPMs) that can be used by the
learner to reduce the search space. We demonstrate how this background knowl-
edge can be used with variable and model voting and show that doing so improves
performance significantly, especially when the number of observations is small.

In the rest of the paper, we give some background on LPMs (Section 2), then
describe our voting-based methods (Section 3). After introducing these methods
in the case where the preferred values of all attributes are known, we present ex-
tensions of these algorithms to the case where preferred values are not known
a priori (Section 4). We then introduce our background knowledge representa-
tion, show how we can generalize the voting methods to exploit this background
knowledge (Section 5), present an approach for handling noisy data (Section 6),
and present experimental results of this work (Section 7). Finally, we present
related work (Section 8) and discuss our future work and conclusions (Section 9).

2. Lexicographic Preference Models

In this section, we briefly introduce the lexicographic preference model (LPM)
and summarize previous results on learning LPMs. In this work, we only consider
binary variables whose domain is {0, 1}.1 For clarity in the introduction of our
algorithms, we assume for now that the preferred value of each variable is known.
This assumption will be removed in Section 4. Without loss of generality, we will
assume that 1 is always preferred to 0.

Given a set of variables, X = {X1 . . . Xn}, an object A over X is a vector of
the form [x1, . . . , xn]. We use the notation A(Xi) to refer the value of Xi in the
object A. A lexicographic preference model L on X is a total order on a subset
R of X . We denote this total order with @L. Any variable in R is relevant with

1The representation can easily be generalized to monotonic preferences with ordinal variables,
such that 1 corresponds to a preference on the values in increasing order, and 0 to a decreasing
order, as shown by Yaman and desJardins [21] for conditional preference networks (CP-nets).
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respect to L; similarly, any variable in I = X −R is irrelevant with respect to L.
If a variable A appears earlier in this total order than B (A < B), then A is said
to be more important or to have a smaller rank than B.

If A and B are two objects, then the preferred object given L is determined as
follows:

• Find the smallest (most important) variable X∗ in @L such that X∗ has
different values in A and B. The object that has the value 1 for X∗ is the
most preferred.

• If all relevant variables inL have the same value inA andB, then the objects
are equally preferred (a tie).

Example 1. Suppose X1 < X2 < X3 is the total order defined by an LPM
L, and consider objects A = [1, 0, 1, 1], B = [0, 1, 0, 0], C = [0, 0, 1, 1], and
D = [0, 0, 1, 0]. A is preferred over B because A(X1) = 1, and X1 is the most
important variable in L. B is preferred over C because B(X2) = 1 and both ob-
jects have the same value for X1. Finally, C and D are equally preferred because
they have the same values for the relevant variables.

An observation o = (A,B) is an ordered pair of objects, connoting that A is
preferred to B. In many practical applications, however, preference observations
are gathered from demonstration of an expert who breaks ties arbitrarily. That is,
when presented with a situation in which a decision or choice must be made, if
the expert judges the two alternatives to be equally good, the expert will in fact be
indifferent, and will therefore be equally likely to choose either alternative. Thus,
for some observations, A and B may actually be tied in the preference order,
although we cannot determine this directly from the observations. Therefore, an
LPM L is said to be consistent with an observation (A,B) iff L implies that A is
preferred to B or that A and B are equally preferred.

The problem of learning an LPM is defined as follows. Given a set of obser-
vations, find an LPM L that is consistent with the observations. Previous work
on learning LPMs was limited to the case where all variables are relevant. This
assumption entails that, in every observation (A,B), A is strictly preferred to B,
since ties can only happen when there are irrelevant attributes.

The best published algorithm for learning LPMs from observations was
presented by Schmitt and Martignon [16], who proposed a greedy variable-
permutation algorithm that is guaranteed to find one of the LPMs that is consis-
tent with the observations, if one exists. They have also shown that for the noisy
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Algorithm 1 greedyPermutation
Require: A set of variables X and a set of observations O.
Ensure: An LPM that is consistent with O, if one exists.

1: for i = 1, . . . , n do
2: Arbitrarily pick one of Xj ∈ X such that

MISS(Xj , O) = minXk∈X MISS(Xk, O)
3: Rank(Xj) := i, assign the rank i to Xj

4: Remove Xj from X
5: Remove all observations (A, B) from O such that A(Xj) 6= B(Xj)
6: Return the total order @ on X such that Xi < Xj iff Rank(Xi) < Rank(Xj)

data case, finding an LPM that does not violate more than a constant number of
the observations is NP-complete. We use this greedy algorithm, which is shown
in Algorithm 1, as a performance baseline. The algorithm refers to a function
MISS(Xi, O), which is defined as |{(A,B) ∈ O : B(Xi)is preferred toA(Xi)}|;
that is, the number of observations violated in O if the most important variable is
selected as Xi. Basically, the algorithm greedily constructs a total order by choos-
ing the variable at each step that causes the minimum number of inconsistencies
with the observations. If multiple variables have the same minimum, then one of
them is chosen arbitrarily. The algorithm runs in polynomial time, specifically
O(n2m), where n is the number of variables and m is the number of observations.

Dombi et al. [7] have shown that if there are n variables, all of which are rel-
evant, then O(n log n) queries to an oracle suffice to learn an LPM. Furthermore,
it is possible to learn any LPM with O(n2) observations if all pairs differ in only
two variables. They proposed an algorithm that can find the unique LPM induced
by the observations. In case of noise due to irrelevant attributes (with ties reported
arbitrarily), the algorithm does not return an answer.

In the net section, we investigate the following problem: Given a set of ob-
servations with no noise, but possibly with arbitrarily broken ties, find a rule for
predicting preferences that agrees with the target LPM that produced the obser-
vations. Later in the paper, we will relax this assumption to permit noisy data
(Section 6).

3. Voting Algorithms

We propose a democratic approach for approximating the target LPM that pro-
duced a set of observations. Instead of finding just one of the consistent LPMs, it
reasons with a collection of LPMs that are consistent with the observations. Given
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two objects, such an approach prefers the one that a majority of its models prefer.
A naive implementation of a voting algorithm would enumerate all LPMs that are
consistent with a set of observations. However, since the number of models that
are consistent with a set of observations can be exponential, the naive implemen-
tation is infeasible.

In this section, we describe two methods—variable voting and model voting—
that sample the set of consistent LPMs and use voting to predict the preferred ob-
ject. Unlike existing algorithms that learn LPMs, these methods do not require
all variables to be relevant or observations to be tie-free. The following subsec-
tions explain the variable-voting and model-voting methods and summarize our
theoretical results.

3.1. Variable Voting
Variable voting uses a generalization of the LPM representation. Instead of

a total order on the variables, variable voting reasons with a weak order2 (�) to
find the preferred object in a given pair. Among the variables that differ in the two
objects, the ones that have the smallest rank (and are hence the most salient) in
the weak order vote to choose the preferred object. The object that has the most
“1” values for the voting variables is declared to be the preferred one. If the votes
are equal, then the objects are equally preferred.

Definition 1 (Variable Voting). Suppose X is a set of variables and � is a weak
order on X . Given two objects, A and B, the variable-voting process with respect
to � for determining which of the two objects is preferred is:

• Define D to be the set of variables that differ in A and B.

• Define D∗ to be the set of variables in D that have the smallest rank among
D with respect to �.

• Define NA to be the number of variables in D∗ that favor A (i.e., that have
value 1 in A and 0 in B) and NB to be the number of variables in D∗ that
favor B.

• If NA > NB, then A is preferred. If NA < NB, then B is preferred. Other-
wise, they are equally preferred.

2A weak order is an asymmetric, reflexive, and transitive order. In other words, a weak order
defines an ordering over sets of objects; within each set, the objects are unordered with respect to
each other.
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Algorithm 2 learnVariableRank
Require: A set of variables X , and a set of observations O.
Ensure: A weak order on X .

1: Π(x) = 1, ∀ x ∈ X
2: while Π has changed on the last iteration do
3: for Every observation (A, B) ∈ O do
4: D = {x|A(x) 6= B(x)}
5: D∗ = {x ∈ D|∀y ∈ D, Π(x) ≤ Π(y)}
6: VA = {x ∈ D∗|A(x) = 1}
7: VB = {x ∈ D∗|B(x) = 1}
8: VariableVote predicts a preferred object based on VA > VB .
9: for x ∈ VB such that Π(x) < |X| do

10: Π(x) = Π(x) + 1;
11: Return weak order � on X such that x � y iff Π(x) < Π(y).

Example 2. Suppose � is the weak order {X2, X3} < {X1} < {X4, X5}. Con-
sider objects A = [0, 1, 1, 0, 0] and B = [0, 0, 1, 0, 1]. D is {X2, X5}. D∗ is {X2}
because X2 is the smallest ranking variable in D with respect to �. X2 favors A
because A(X2) = 1. Thus, variable voting with � prefers A over B.

Algorithm 2 presents the algorithm learnVariableRank, which learns a weak
order � on the variables from a set of observations such that variable voting
with respect to � will correctly predict the preferred objects in the observations.
Specifically, it finds weak orders that define equivalence classes on the set of vari-
ables. The algorithm maintains the minimum possible rank for every variable that
does not violate an observation with respect to variable voting. Initially, all vari-
ables are considered equally important (rank of 1). The algorithm loops over the
set of observations until the ranks converge. At every iteration and for every pair,
variable voting predicts a winner, which allows us to use this algorithm in the
online-learning setting where examples (O) need to be classified during the learn-
ing process. Regardless of this prediction, the ranks of the variables that voted
for the wrong object are incremented, thus reducing their importance. Finally, the
algorithm builds a weak order � based on the ranks such that x � y if and only
if x has a lower rank than y. In the offline-learning setting (where O is a set of
training examples), this weak order can then be given directly to variable voting
to classify examples in the test set.

Example 3. SupposeX = {X1, X2, X3, X4, X5} andO consists of ([0, 1, 1, 0, 0],
[1, 1, 0, 1, 1]), ([0, 1, 1, 0, 1], [1, 0, 0, 1, 0]) and ([1, 0, 1, 0, 0], [0, 0, 1, 1, 1]). Table
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Table 1: The rank of the variables after each iteration of the for-loop in line 3 of the algorithm
learnVariableRank.

Observations X1 X2 X3 X4 X5

Initially 1 1 1 1 1
[0, 1, 1, 0, 0], [1, 1, 0, 1, 1] 2 1 1 2 2
[0, 1, 1, 0, 1], [1, 0, 0, 1, 0] 2 1 1 2 2
[1, 0, 1, 0, 0], [0, 0, 1, 1, 1] 2 1 1 3 3

1 illustrates the ranks of every variable in X after each iteration of the for-loop
in line 3 of the algorithm learnVariableRank. The ranks of the variables stay the
same during the second iteration of the while-loop; therefore, the loop terminates.
The weak order � based on ranks of the variables is the same as the order given
in Example 2.

We now summarize our theoretical results about the algorithm learnVariableRank.

Correctness. Suppose � is a weak order returned by learnVariableRank(X ,O).
Any LPM L based on a corresponding topological sort @L of� will be consistent
with the observation set O. This can be proven simply by contradiction. Suppose
an observation oi existed such that a majority of the variables within an existing
class led to an incorrect classification of oi based on the returned weak order �.
Since the learning algorithm loops over all of the observations, this process would
have resulted in an increment of a value and the algorithm would not have com-
pleted with the current �, thus all LPM consistent with � are consistent with O.
Furthermore, learnVariableRank never increments the ranks of the relevant vari-
ables beyond their actual rank in the target LPM. This can be seen by considering
the cases of both relevant and irrelevant variables. First, for relevant variables,
the number of times a variable is in the set of variables that actually vote (and are
therefore potentially incremented) and votes incorrectly, is simply its true rank t.
Once it reaches this true rank, by definition it cannot vote incorrectly because this
variable must vote correctly when all other values are tied (otherwise this would
not be its true rank). Second, the ranks of the irrelevant variables can be incre-
mented only as far as the number of variables, thus the algorithm is guaranteed to
terminate, even in the presence of irrelevant variables.

Convergence. In either the online-learning setting (O being incrementally fed to
the learner) or the offline setting (O provided as a batch), learnVariableRank has
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a mistake-bound of O(n2), where n is the number of variables. To see this, we
consider two cases for any given observation ot at time t, assuming for ease of
exposition that A is preferred to B. First, if VA > VB, then a mistake will not
be made, though some variables may have their rank increased anyway (because
they would have voted the wrong way). The second case is where VA < VB, in
which case a mistake is made, and therefore we need to limit the number of such
cases. Ignoring any increments in the first case, we see that because each mistake
increases the sum of the potential ranks by at least 1 and the sum of the ranks
the target LPM induces is O(n2), the second case can occur no more than O(n2)
times . This bound guarantees that given enough observations (as described in
the background section), learnVariableRank will converge to a weak order� that,
when used in conjunction with variable voting, consistently classifies all preferred
objects with respect to the target LPM. Furthermore, the incrementing of ranks in
case 1 gives us the stronger result (mentioned above) that every topological sort of
� has the same prefix as the total order induced by the target LPM. If all variables
are relevant, then � will converge to the total order induced by the target LPM.

Computational Complexity. We consider the computational complexity of learn-
VariableRank in the offline-learning setting where O is provided as a training set.
A loose upper bound on the time complexity of learnVariableRank is O(n3m),
where n is the number of variables and m is the number of observations. This
bound holds because the while-loop on line 2 runs at most O(n2) times (because
this is the max sum of the maximum possible ranks) and the for-loop in line 3
runs for m observations (by definition). The time complexity of one iteration of
the for-loop is O(n) (since all variables need to be considered in the worst case);
therefore, the overall complexity is O(n3m). We leave the investigation of tighter
bounds, improved data structures, and the average case analysis for future work.

3.2. Model Voting
The second method we present employs a Bayesian approach. This method

randomly generates a sample set, S, of distinct LPMs that are consistent with the
observations. When a pair of objects is presented, the preferred one is predicted
using weighted voting. That is, each L ∈ S casts a vote for the object it prefers,
and this vote is weighted according to its posterior probability P (L|S).

Definition 2 (Model Voting). Let U be the set of all LPMs,O be a set of observa-
tions, and S ⊂ U be a set of LPMs that are consistent with O. Given two objects
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A and B, model voting prefers A over B with respect to S if∑
L∈U

P (L|S)V L(A>B) >
∑
L∈U

P (L|S)V L(B>A), (1)

where V L(A>B) is 1 if A is preferred with respect to L, and 0 otherwise. V L(B>A)

is defined analogously. P (L|S) is the posterior probability of L being the target
LPM given S, calculated as discussed below.

We first assume that all LPMs are equally likely a priori. In this case, given
a sample of LPMs S of size k, the posterior probability of an LPM L will be 1/k
if and only if L ∈ S, and 0 otherwise. Note that when S is maximal, this case
degenerates into the naive voting algorithm. However, it is generally not feasible
to enumerate all consistent LPMs—in practice, the sample has to be small enough
to be feasible and large enough to be representative.

In constructing S, we exploit the fact that many consistent LPMs share pre-
fixes in the total order that they define on the variables. We wish to discover and
compactly represent such LPMs. To this end, we introduce the idea of aggregated
LPMs. An aggregated LPM, (X1, X2 . . . , Xk, ∗), represents a set of LPMs that
define a total order with the prefix X1 < X2 < . . . < Xk. Intuitively, an aggre-
gated LPM states that any possible completion of the prefix is consistent with the
observations. The algorithm sampleModels in Algorithm 3 implements a “smart
sampling” approach by constructing an LPM that is consistent with the given ob-
servations, returning an aggregated LPM when possible. We start with an arbitrary
consistent LPM (such as the empty set, which is always consistent) and add more
variable orderings extending the input LPM. We first identify the variables that
can be used in extending the prefix—that is, all variables Xi such that in every ob-
servation, either Xi is 1 in the preferred object or Xi is the same in both objects.
We then select one of those variables randomly and extend the prefix. Finally, we
remove the observations that are explained with this selection and continue with
the rest of the observations. If at any point, no observations remain, then we re-
turn the aggregated form of the prefix, since every completion of the prefix will
be consistent with the null observation. Running sampleModels several times and
eliminating duplicates will produce a set of (possibly aggregated) LPMs.

Example 4. Consider the same set of observations O as in Example 3. Then, the
aggregated LPMs that are consistent with O are as follows: (), (X2), (X2, X3),
(X2, X3, X1, ∗), (X3), (X3, X1, ∗), (X3, X2) and (X3, X2, X1, ∗). To illustrate the
set of LPMs that an aggregate LPM represents, consider (X2, X3, X1, ∗), which
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Algorithm 3 sampleModels
Require: A set of variables X , a set of observations O, and rulePrefix, an LPM to be

extended.
Ensure: An LPM (possibly aggregated) consistent with O.

1: candidates is the set of variables {Y : Y /∈ rulePrefix | ∀(A, B) ∈ O,A(Y ) =
1 orA(Y ) = B(Y )}.

2: while candidates 6= ∅ do
3: if O = ∅ then
4: return (rulePrefix, ∗).
5: Randomly remove a variable Z from candidates.
6: Remove any observation (C, D) from O such that C(Z) 6= D(Z).
7: Extend rulePrefix: rulePrefix = (rulePrefix, Z).
8: Recompute candidates.
9: return rulePrefix

has a total of 5 extensions: (X2, X3, X1), (X2, X3, X1, X4), (X2, X3, X1, X5),
(X2, X3, X1, X4, X5), (X2, X3, X1, X5, X4). Every time the algorithm sample-
Models runs on the set of observations O from Example 3, it will randomly gener-
ate one of the aggregated LPMs: (X2, X3, X1, ∗), (X3, X1, ∗), or (X3, X2, X1, ∗).
Note that the shorter models that are not produced by sampleModels are all sub-
prefixes of the aggregated LPMs and it is easy to modify sampleModels to return
those models as well.

An aggregate LPM in a sample saves us from having to enumerate all possi-
ble extensions of a prefix, but it also introduces complications in computing the
weights (posteriors) of the LPMs, as well as their votes. For example, when com-
paring two objects A and B, some extensions of an aggregate LPM might vote
for A and some for B. Thus, we need to find the total number of LPMs that an
aggregate LPM represents and determine what proportion of them favor A over
B (or vice versa), without enumerating all extensions. Suppose there are n vari-
ables and L is an aggregated LPM with a prefix of length k. Then the number of
extensions of L is denoted by FL and is equal to fn−k, where fm is defined to be:

fm =
m∑

i=0

(
m

i

)
× i! =

m∑
i=0

(m)!

(m− i)!
. (2)

Intuitively, fm counts every possible permutation with at most m items. Note
that fm can be computed efficiently and that the number of all possible LPMs
when there are n variables is given by fn.
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While the above formula calculates the total number of extensions, we still
need to determine how many votes an aggregate LPM L = (X1, X2, . . . , Xk, ∗)
will allocate to each of two compared objects A and B. We will call the variables
X1 . . . Xk the prefix variables. If A and B have different values for at least one
prefix variable, then all extensions will vote in accordance with the smallest such
variable. Suppose all prefix variables are tied and m is the set of all non-prefix
variables. Then m is composed of three disjoint sets a, b, and w, such that a is the
set of variables that favor A, b is the set of variables that favor B, and w is the set
of variables that are neutral (that is, that have the same value in A and B).

An extension L′ of Lwill produce a tie iff all variables in a and b are irrelevant
in L′. The number of such extensions is f|w|. The number of extensions that favor
A over B is directly proportional to |a|/(|a| + |b|). Therefore, the number of
extensions of L that will vote for A over B (denoted by NLA>B) is:

NLA>B =
|a|

|b|+ |a|
× (fm − f|w|). (3)

The number of extensions of L that will vote for B over A is computed similarly.
Note that the computation of NLA>B, NLB>A, and FL can be done in linear time by
caching the recurring values.

Example 5. Suppose X and O are as defined in Example 3. The first column of
Table 2 lists all LPMs that are consistent with O. The second column gives the
posterior probabilities of these models given the sample S1, which is the set of
all consistent LPMs. The third column is the posterior probability of the models
given the sample S2 = {(X2, X3, X1, ∗), (X3, X1, ∗), (X3, X2, X1, ∗)}. Given
two objects A = [0, 1, 1, 0, 0] and B = [0, 0, 1, 0, 1], the number of votes for each
object based on each LPM is given in the last two columns. Note that the total
number of votes for A and B does not add up to the total number of extensions of
(X3, X1, ∗) because two of its extensions—(X3, X1) and (X3, X1, X4)—prefer A
and B equally.

Algorithm 4 describes modelVote, which takes a sample of consistent LPMs
(produced, for instance, by sampleModels) and a pair of objects as input, and
predicts the preferred object using the weighted votes of the LPMs in the sample.

Returning to Example 5, the reader can verify that model voting will prefer
A over B. Next, we present our theoretical results on the sampleModels and
modelVote algorithms.
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Table 2: The posterior probabilities and number of votes of all LPMs in Example 5.

LPMs P (L|S1) P (L|S2) NLA>B NLB>A

() 1/31 0 0 0
(X2) 1/31 0 1 0
(X2, X3) 1/31 0 1 0
(X2, X3, X1, ∗) 5/31 5/26 5 0
(X3) 1/31 0 0 0
(X3, X1, ∗) 16/31 16/26 7 7
(X3, X2) 1/31 0 1 0
(X3, X2, X1, ∗) 5/31 5/26 5 0

Complexity. The time complexity of sampleModels is bounded by O(n2m),
where n is the number of variables and m is the number of observations: the
while-loop in line 2 runs at most n times (the worst case is that each variable
needs to be removed one at a time from candidates). At each iteration, we have
to process every observation, each time performing computations in O(n) time.
If we call sampleModels s times (to generate a sample of size s) then the total
complexity of sampling is O(sn2m). For constant s, or with s bounded by a
polynomial function of the other relevant quantities (n and m), this bound is still
polynomial. Similarly, the complexity of modelVote is O(sn) because it considers
each of the s rules in the sample, counting the votes of each rule, which can be
done in O(n) time.

Comparison to variable voting. The set of LPMs that is sampled via learnVari-
ableRank is a subset of the LPMs that sampleModels can produce and there
are cases where this relationship is strict (models(learnVariableRank) ⊂ mod-
els(sampleModels). For inclusion, we see that sampleModels without aggregates
considers all possible models (since every variable is considered in every location
in the LPM recursively). Thus, the LPMs consistent with the weak order returned
by learnVariableRank must be a subset of these models. The strictness can be
shown with the running example in the paper demonstrates that sampleModels
can generate the LPM (X3, X1, ∗); however, none of its extensions is consistent
with the weak order returned by learnVariableRank.
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Algorithm 4 modelVote
Require: A set of LPMs, S, and two objects, A and B.
Ensure: Returns either one of A or B or tie.

1: Initialize sampleSize to the number of non-aggregated LPMs in S.
2: for every aggregated LPM L ∈ S do
3: sampleSize+=FL.
4: Vote(A) = 0 ; Vote(B) = 0 ;
5: for every LPM L ∈ S do
6: if L is not an aggregate rule then
7: winner is the object that L prefers among A and B.
8: Increment Vote(winner) by 1/sampleSize.
9: else

10: if A and B differ in at least one prefix variable of L then
11: L∗ is any extension of L
12: winner is the object that L∗ prefers among A and B
13: Vote(winner) += FL/sampleSize.
14: else
15: Vote(A) += NL

A>B/sampleSize.
16: Vote(B) += NL

B>A/sampleSize.
17: if Vote(A) = Vote(B) then
18: Return a tie
19: else
20: Return the object obj with the highest Vote(obj ).

4. Learning Preferred Attribute Values

In the previous sections, we assumed that the preferred value for each binary
variable was known, so only the order of importance on the variables needed to
be learned. In this section, we generalize the definition of an LPM to explicitly
state the preferred value for each relevant variable. The motivation for this gener-
alization is that the preferred value of a variable is not always known a priori. For
example, in a meal preference learning situation, different groups of people might
prefer different values of the “spicy” variable.

To represent this larger model space, we will use a pair of literals to represent
each variable, similar to the trick used in learning Boolean formulae over binary
variables. There are two literals l based on a variable X: the variable X (positive
literal) and its negation ¬X (negative literal). Given a set of variables V , let L(V )
be the set of all literals based on variables in V. A generalized LPM L on L(V ) is
a total order on a subset R of L(V ) such that R does not contain both a positive
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and a negative literal based on the same variable. If A and B are two objects, then
the preferred object given L is determined as follows:

• Find the smallest literal l in L such that if X is the variable l is based on,
then A(X) and B(X) have different values. If l is a positive literal, then the
object that has the value 1 for X is preferred; otherwise, the object that has
the value 0 for X is preferred.

• If all relevant variables inL have the same value inA andB, then the objects
are equally preferred (a tie).

Example 6. Suppose ¬X1 < X2 < X3 is the total order defined by a generalized
LPM L, and consider objects A = [1, 0, 1, 1], B = [0, 1, 0, 0] and C = [0, 0, 1, 1].
B is preferred over A because B(X1) = 0, and ¬X1 is the most important literal
in L. B is preferred over C because B(X2) = 1 and both objects have the same
value for X1.

Next we will adapt the voting algorithms described in previous sections to
learn generalized LPMs.

4.1. Generalized Variable Voting
We can adapt the definition of variable voting (Definition 1) in a similar way

to the LPM generalization above. Essentially, we need to define the weak order
� over a set of literals instead of a set of variables. We also need to modify the
way we count votes (NA and NB), such that among the voting literals, positive
(negative) literals vote for the object that has 1 (0) for the variable the literal is
based on. To avoid repetition, we will not formally define generalized variable
voting, but the following example demonstrates the new vote-counting procedure.

Example 7. Suppose that � is the weak order {X2, X3} � {X1,¬X2,¬X3, X4,
¬X5} � {¬X1,¬X4, X5}. Consider objects A = [1, 0, 1, 1, 0] and B =
[0, 0, 1, 0, 1]. The literals based on variables that are different in A and B are
D = {X1,¬X1, X4, ¬X4, X5,¬X5}. The literals that get to vote are X1, X4, and
¬X5 since they are the smallest ranking variables in D with respect to �. X1

votes for A because X1 is a positive literal and A(X1) = 1. Similarly, X4 votes
for A. ¬X5 votes for B because it is a negative literal and B(X5) = 0. Therefore,
variable voting with � prefers A over B.
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Algorithm 5 genLearnVariableRank
Require: A set of variables X , and a set of observations O.
Ensure: A weak order on literals based on variables in X .

1: Π(x) = 1 and Π(¬x) = 1,∀ x ∈ X
2: while Π can change do
3: for every observation (A, B) ∈ O do
4: D is the set of literals based on variables that differ in A and B
5: D∗ = {x ∈ D|∀y ∈ D, Π(x) ≤ Π(y)}
6: VA is the set of positive (negative) literals in D∗ that are 1 (0) in A.
7: VB is the set of positive (negative) literals in D∗ that are 1 (0) in B.
8: for x ∈ VB such that Π(x) < |X|+ 1 do
9: Π(x) = Π(x) + 1;

10: Return weak order � on X such that x � y iff Π(x) < Π(y).

As the previous example demonstrates, a literal votes only if its complement
does not have a smaller rank. Furthermore, if both a literal and its complement
have the same ranking, then their votes will cancel each other out and will not
affect the preference decision. We note that in either case, since both the positive
and negative literals appear in the variable ranking, special care must be taken
when constructing an LPM from this weak ordering, a topic we return to at the
end of this section.

Algorithm 5 presents the algorithm genLearnVariableRank. Given a set of
observations, this algorithm learns the ranking of each literal and returns a weak
order� on a subset of the literals. Generalized variable voting (as outlined above)
with respect to � will correctly predict the preferred objects in the observations.
The genLearnVariableRank algorithm is very similar to learnVariableRank; the
major difference is that in genLearnVariableRank, the ranking function Π is over
all possible literals and is updated when the prediction was wrong or correct but
not unanimous. The rank of a literal is not incremented beyond one more than the
number of variables.

Example 8. Suppose X = {X1, X2, X3, X4, X5} and O consists of
([0, 1, 1, 0, 0],[1, 1, 0, 1, 1]), ([0, 1, 1, 0, 1], [1, 0, 0, 1, 0]) and ([1, 0, 1, 1, 0]
,[0, 0, 1, 0, 1]). Table 3 illustrates the ranks of every literal based on vari-
ables in X after each iteration of the for-loop in line 3 of the algorithm
genLearnVariableRank. The while-loop in line 2 of the algorithm terminates after
two iterations. The algorithm genLearnVariableRank returns the weak order
{X2, X3} � {X1,¬X2,¬X3, X4,¬X5} � {¬X1,¬X4, X5}.
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Table 3: The rank of the literals after each iteration of the for-loop in line 3 of the algorithm
genLearnVariableRank.

Observations X1 X2 X3 X4 X5 ¬X1 ¬X2 ¬X3 ¬X4 ¬X5

Initially 1 1 1 1 1 1 1 1 1 1
[0, 1, 1, 0, 0], [1, 1, 0, 1, 1] 2 1 1 2 2 1 1 2 1 1
[0, 1, 1, 0, 1], [1, 0, 0, 1, 0] 2 1 1 2 2 1 2 2 1 2
[1, 0, 1, 1, 0], [0, 0, 1, 0, 1] 2 1 1 2 2 2 2 2 2 2
[0, 1, 1, 0, 0], [1, 1, 0, 1, 1] 2 1 1 2 2 2 2 2 2 2
[0, 1, 1, 0, 1], [1, 0, 0, 1, 0] 2 1 1 2 2 2 2 2 2 2
[1, 0, 1, 1, 0], [0, 0, 1, 0, 1] 2 1 1 2 3 3 2 2 3 2

The asymptotic bounds for the complexity and convergence of learnVari-
ableRank also hold for genLearnVariableRank. However, for correctness, the re-
lationship between the weak order � returned by genLearnVariableRank and the
generalized LPMs consistent with the observations needs to be revised. Specifi-
cally, a topological sort of � will not be a valid generalized LPM because it will
contain literals that are negations of each other. To correct this problem, we can
simply discard any literal that has a higher rank than its opposite; if a pair of such
literals appears in the same bin, we can discard them both. A topological sort can
then be performed on the resulting weak order to produce a generalized LPM L.
Any LPM produced in such a manner is consistent with O because the discarded
variables could never have been used by the learning algorithm to make, or even
influence, a prediction.

4.2. Generalized Model Voting
The modifications to model voting can be considered in two parts. First, we

need to extend the algorithm sampleModels to produce generalized LPMs. Algo-
rithm 6 presents the algorithm genSampleModels, which operates on the level of
literals and returns (possibly aggregated) generalized LPMs. Similar to sample-
Models, a positive literal X is considered as a candidate for rule extension only if
in every observation, either X is 1 in the preferred object or is the same in both
objects. A negative literal ¬X is a candidate when in every observation, either X
is 0 in the preferred object or is the same in both objects. Note that to produce
a valid LPM, we also need to ensure that the prefix contains at most one literal
based on the same variable.

Second, we need to generalize the counting of model extensions for aggregate
LPMs and the distribution of votes when comparing two objects. The number of
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Algorithm 6 genSampleModels
Require: A set of variables X , a set of observations O, and rulePrefix, an LPM to be

extended.
Ensure: An LPM (possibly aggregated) consistent with O.

1: candidates+ is the set of positive literals {Y : Y,¬Y /∈ rulePrefix | ∀(A, B) ∈
O,A(Y ) = 1 orA(Y ) = B(Y )}.

2: candidates− is the set of negative literals {¬Y : Y,¬Y /∈ rulePrefix | ∀(A, B) ∈
O,A(Y ) = 0 orA(Y ) = B(Y )}.

3: candidates = candidates+ ∪ candidates−

4: while candidates 6= ∅ do
5: if O = ∅ then
6: return (rulePrefix, ∗).
7: Randomly remove a variable Z from candidates.
8: Remove any observation (C, D) from O such that C(Z) 6= D(Z).
9: Extend rulePrefix: rulePrefix = (rulePrefix, Z).

10: Recompute candidates.
11: return rulePrefix

extensions of L is denoted by FL and is equal to fn−k, where n is the set of of
variables the literals are based on, k is the length of the prefix in L, and fm is
redefined as:

fm =
m∑

i=0

(
m

i

)
× i!× 2i =

m∑
i=0

m!× 2i

(m− i)!
. (4)

The new definition of fm has an extra 2i term inside the summation because the
extensions of i fixed variables include every combination of literals (positive or
negative) for each variable.

Now consider a pair of objects, A and B, and an aggregated generalized LPM
L. As before, if A and B have different values for at least one prefix literal in L,
then all extensions will vote in accordance with the smallest such literal. However,
if all prefix variables are tied, then in generalized model voting, the votes will
be divided equally because there is an equal number of extensions with positive
and negative literals based on the rest of the variables. Thus, the algorithm for
generalized model voting will be the same as modelVote, except that the first line
will call the algorithm genSampleModels and lines 14 to 16 (which compute the
distribution of votes for aggregate LPMs when the prefix variables are tied) will
be deleted.

18



5. Introducing Background Knowledge

In general, when there are not many training examples for a learning algo-
rithm, the space of consistent LPMs is large. In this case, it is not possible to find a
good approximation of the target model. To overcome this problem, we can intro-
duce background knowledge, indicating that certain solutions should be favored
over the others. In this section, we propose a form of background knowledge con-
sisting of equivalence classes over the set of attributes. These equivalence classes
indicate the set of most important attributes, second most important attributes, and
so on. For example, when buying a used car, most people consider the most im-
portant attributes of a car to be the mileage, the year, and the make of the car. The
second most important set of attributes is the color, number of doors, and body
type. Finally, perhaps the least important properties are the interior color and the
wheel covers. Throughout this section, we assume that the preferred value of a
variable is known or is given in the background knowledge. We now formally de-
fine our representation for background knowledge and what it means for an LPM
to be consistent with the background knowledge.

Definition 3 (Background knowledge). The background knowledge B for learn-
ing a lexicographic preference model on a set of variablesX is a weak order: that
is, a total order on a partition of X . B has the form E1 < E2 < . . . < Ek, where
∪iEi = X . B defines a weak order on X such that for any two variables x ∈ Ei

and y ∈ Ej , x < y iff Ei < Ej . We denote this weak order by �B.

Definition 4. Suppose that X = {X1, . . . Xn} is a set of variables, B the back-
ground knowledge, and L an LPM. L is consistent with B iff the total order @L is
consistent with the weak order �B.

Intuitively, an LPM that is consistent with background knowledge B respects
the variable orderings induced by B. The background knowledge prunes the space
of possible LPMs. The size of the partition determines the strength of B; for
example, if there is a single variable per set, then B defines a specific LPM. In
general, the number of LPMs that is consistent with background knowledge of
the form E1 < E2 < . . . < Ek can be computed with the following recursive
formula:

G([e1, . . . ek, ]) = fe1 + e1!× (G([e2, . . . ek])− 1), (5)

where ei = |Ei| and the base case for the recursion is G([]) = 1. The first term in
the formula counts the number of possible LPMs using only the variables in E1,
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which are the most important variables. The definition of consistency entails that
a variable can appear in @L iff all of the more important variables are already in
@L, hence the term e1!. Note that the recursion on G is limited to the number of
sets in the partition, which is bounded by the number of variables; therefore, it
can also be computed in linear time by caching precomputed values of f .

To illustrate the potential power of background knowledge, consider a learning
problem with nine variables. Without background knowledge, the total number of
LPMs is 905,970. If the background knowledge B partitions the variables into
three sets, each with three elements, then the number of LPMs consistent with B
is only 646. If B has four sets, where the first set has three variables and the rest
have two, limits the number to 190.

We can easily generalize the learnVariableRank algorithm to utilize back-
ground knowledge, by changing only the first line of learnVariableRank, which
initializes the ranks of the variables. Given background knowledge of the form
S1 < . . . < Sk, the generalized algorithm assigns the rank 1 (most important
rank) to the variables in S1, rank |S1| + 1 to those in S2, and so forth. This ini-
tialization ensures that an observation (A,B) is used for learning the order of
variables in a class Si only when A and B have the same values for all variables
in classes S1 . . . Si−1 and have different values for at least one variable in Si.

The algorithm modelVote can also be generalized to use background knowl-
edge B. In the sample generation phase, we use sampleModels as presented ear-
lier, and then eliminate all rules whose prefixes are not consistent with B. Note
that even if the prefix of an aggregated LPM L is consistent with B, this may not
be the case for every extension of L. Thus, in the algorithm modelVote, we need to
change any references to FL andNLA<B (orNLB<A) with FBL andNL,B

A<B (orNL,B
B<A),

respectively, where:

• FBL is the number of extensions of L that are consistent with B, and

• NL,B
A<B is the number of extensions of L that are consistent with B and prefer

A. (NL,B
B<A is analogous.)

Suppose that B is given as E1 < . . . < Em. Let Y denote the prefix variables
of an aggregate LPM L and let Ek be the first set such that at least one variable in
Ek is not in Y . Then, FBL = G([|Ek − Y |, |Ek+1 − Y |, . . . |Em − Y |]).

When counting the number of extensions of L that are consistent with B and
prefer A, we again need to examine the case where the prefix variables equally
prefer the objects. Suppose Y is as defined as above and Di denotes the set dif-
ference between Ei and Y . Let Dj be the first non-empty set and Dk be the first
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set such that at least one variable in Dk has different values in the two objects.
Obviously, only the variables in Dk will influence the prediction of the preferred
object. If

• di = |Di|, the cardinality of Di, and

• a is the set of variables in Dk that favor A, b is the set of variables in Dk

that favor B, and w is the set of variables in Dk that are neutral,

then NL,B
A>B, the number of extensions of L that are consistent with B and prefer

A, can be computed as follows:

NL,B
A>B =

|a|
|a|+ |b|

× (FBL −G([dj . . . dk−1, |w|])). (6)

6. Handling Noisy Data

Although inferring an LPM from noisy data is NP-complete [16], the moder-
ate empirical success of the Greedy algorithm (as seen in Section 7.7) give us an
intuition as to how a heuristic solution with voting can be developed. Specifically,
the greedy approach iteratively constructed an LPM where each added attribute
violated the fewest number of observations. We can borrow this intuition to build
heuristic extensions of learnVariableRank and modelVote. If the expected number
of noisy observations ε in a data set is provided, then the new algorithm, Noise-
Aware Model Vote (NAMV ), changes sampleModels to only consider a variable
as a candidate if adding it will not violate more (in total with the other variables)
than ε observations. Notice that this remains a stochastic LPM construction and
can still consider many more LPMs than the greedy approach. Following a simi-
lar path, we can develop a noise-aware version of learnVariableRank in which the
ranks of the variables are not updated unless at least ε observations are mispre-
dicted.

If we do not know the expected amount of noise in our observations, then we
can employ a hybrid approach between greedyPermutation and modelVote, which
we call greedyVote, by simply replacing the sampling algorithm sampleModels
with greedyPermutation. In doing so, we will be losing the advantage of ag-
gregate LPMs (since greedyPermutation produces a single LPM) and we will be
confining our samples to the ones that can only be generated by the “make min-
imum mistakes” heuristic. We will investigate the resilience of both extensions
empirically in Section 7.7.
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7. Experiments

In this section, we explain our experimental methodology and discuss the re-
sults of our empirical evaluations. We define the prediction performance of an
algorithm P with respect to a set of test observations T as:

performance(P, T ) =
Correct(P, T ) + 0.5× Tie(P, T )

|T |
, (7)

where Correct(P, T ) is the number of observations in T that are predicted cor-
rectly by P (including any prediction for t ∈ T where t is actually a tie) and
Tie(P, T ) is the number of observations in T that P predicted as a tie when one
object should actually have been preferred over the other. Note that an LPM re-
turned by greedyPermutation never returns a tie. In contrast, variable voting with
respect to a weak order in which every variable is equally important will only re-
turn ties, so the overall performance will be 0.5, which is no better than randomly
selecting the preferred objects. We will use MV , V V , and G to denote the model
voting, variable voting, and the greedy approximations of an LPM. Similarly we
will use NAMV and GV to denote Noise-Aware Model Vote and greedyVote.

Given sets of training and test observations, (O, T ), we measure the average
and worst performances of V V , MV and G. When combined with learnVari-
ableRank, V V is a deterministic algorithm, so the average and worst performances
of V V are the same. However, this is not the case forMV with sampling, because
sampleModels is randomized. Even for the same training and test data (O, T ), the
performance of MV can vary. To mitigate this effect, we ran MV 10 times for
each (O, T ) pair, and called sampleModels S times on each run (thus the sample
size is at most S), recording the average and worst of its performance. The greedy
algorithmG is also randomized (in line 2, one variable is picked arbitrarily), so we
ran G 200 times for every (O, T ), recording its average and worst performance.
In all of the figures below, the data points are averages over 20 runs with different
(O, T ). We employed two-tailed T-test with 95% confidence interval to test signif-
icance. In our discussion of the results, when applicable, we note the statistically
significant differences.

For our experiments, the control variables are R, the number of relevant vari-
ables in the target LPM; I , the number of irrelevant variables; NO, the number
of training observations; and NT , the number of test observations. For MV ex-
periments, the sample size (S) is also a control parameter. For fixed values of R
and I , an LPM L is randomly generated. (If background knowledge B is given,
then L is also consistent with B.) Unless otherwise noted (as in Section 7.5),

22



Figure 1: (a) Average prediction performance and (b) worst prediction performance of the greedy
algorithm, variable voting, and model voting.

the preferred value of each attribute is 1; otherwise, the preferred value of each
attribute is chosen randomly. We randomly generated NO and NT pairs of ob-
jects, each with I + R variables. Finally, we labeled the preferred objects ac-
cording to L. In order to allow other researchers replicate our results, we posted
the data files and the scripts that we used for data generation on the web at
http://maple.cs.umbc.edu/LPM.

7.1. Comparison of MV, VV and G
Figure 1(a) shows the average performance of G; MV with sample size S =

200; and V V for R = 15, I = 0, and NT = 20, as NO ranges from 2 to 20. Figure
1(b) shows the worst performance for each algorithm. In these figures, the data
points are averages over 20 different pairs of training and test sets (O, T ). The
average performance of V V and MV is better than the average performance of
G, and the difference is significant at every data point. Also, note that the worst-
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case performance ofG after seeing two observations is around 0.3, which suggests
a very poor approximation of the target. V V and MV ’s worst-case performance
are much better than the worst-case performance of G, justifying the additional
complexity of the algorithms MV and V V .

7.2. Greedy Voting
Even though we proposed greedyVote as a noise-aware adaptation of model

vote we also investigated its performance for the noise-free case. For this ex-
periment, we used the same data set and control variables explained in 7.1. In
addition, the sample size for GV is set to 200 as it is for MV . Figure 2 contains
the average performance of MV , V V and G and as well as the worst performance
of MV which were already reported in Figure 1 (a) and (b). Figure 2 demon-
strates the average and worst case performance of GV . Just like MV , GV is a
randomized algorithm, thus for each data set we ran GV ten times and used the
average of ten runs as the prediction performance. An interesting result is GV ’s
average performance is very close to V V ’s performance and its worst case per-
formance is almost same as the average performance of G. Therefore, by virtue
of being a voting-based algorithm, GV demonstrates a much better worst case
performance than the greedy algorithm; however, the worst case performance is
still significantly worse than MV and V V . We believe that this behavior occurs
becauseGV uses the greedy approach for sampling the space of consistent LPMs,
as reflected in the tight overlap between worst GV and average G performances.

7.3. Effect of Sample Size on MV Performance
Figure 3 shows the worst and average prediction performance of MV with

sample sizes S = 10, S = 50, S = 200 and S = 1200 for problems with 10
relevant variables (R = 10) and and no irrelevant variables (I = 0). The number
of observations (No) increases from 2 to 20 along the x-axis. In general, as the
sample size increases, the prediction performance increases. The effect of sample
size on worst-case performance is more evident than the average performance.

7.4. Irrelevant Variables
Irrelevant variables hamper the pruning of the space of possible LPMs. Of the

two voting-based algorithms, MV has the ability to ignore some of the variables
early on if sampleModels produces LPMs that do not use all of the variables. V V ,
on the other hand, operates with the entire set of variables, although given enough
observations, it eventually discovers the irrelevant ones. In our experiments, we
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Figure 2: The average and worst case prediction performance of greedyVote compared to model
voting, variable voting, and greedy approaches for noise-free data.

compared the average performance ofMV and V V for cases where the total num-
ber of attributes were constant and the number of irrelevant attributes varied. Our
results showed that both algorithms are robust in the presence of irrelevant vari-
ables. Furthermore, for several test cases where the number of irrelevant variables
dominated the number of relevant variables, or when the total number of attributes
was small, the performance of both algorithms improved over the case where only
relevant variables appeared. That is, all things being equal, the algorithms found
it easier to learn to ignore an irrelevant variable than to use a relevant one.

Figure 4 depicts two such cases. The graph on the left shows the average pre-
diction performance ofMV and V V forR = 2, I = 3 andR = 5, I = 0. The data
sets with fewer relevant variables are learned more easily. The right shows the re-
sults of the same comparison and the same pattern of results with more attributes:
R = 3, I = 12 and R = 15, I = 0. We have seen this pattern in several other
similar situations. Note that the graphs show model voting outperforming variable
voting, but we have not observed this difference to be statistically significant. Our
experiments indicate that both algorithms are robust in the presence of irrelevant
variables, still achieving high accuracy values with relatively few samples.
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Figure 3: (a) The average prediction performance and (b) the worst prediction performance of
model voting for different sample sizes.

7.5. Learning Preferred Variable Values
We implemented the generalized versions of MV and V V , which we will

refer as gMV and gV V , respectively. We tested the performance of gMV and
gV V using two different data sets. The first data set is same as the one used for
comparing MV and V V where R = 15 and I = 0 and for all variables 1 is al-
ways preferred over 0. Figure 5(a) shows the average and worst performance of
MV and V V . A quick comparison to Figure 1 reveals the decreased prediction
performance (which is statistically significant) in all three. This was an expected
result, given the increase in the search space. The second data set has R = 5 and
I = 10 and the preferred value of variables are chosen randomly. Figure 5(b)
demonstrates the performance of MV and V V in a very similar pattern to Fig-
ure 5(a).

7.6. Effect of Hidden Ties
Figure 6 shows the prediction performance of V V and G (average and worst

case) for problems with 10 relevant variables (R = 10) and five irrelevant vari-
ables (I = 5). The number of observations (No) is always 50, but the number of
these observations that are hidden ties varies from 0 to 45 (x-axis).

In general, as the number of hidden ties increase in the observations, the pre-
diction performance degrades. This result was expected because the number of
useful observations that can help the algorithms learn the ranking on the relevant
attributes decreases as the number of hidden ties increases. The performance of
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Figure 4: Average MV performance and V V performance for different numbers of relevant and
irrelevant variables.

MV on the same data sets was very similar to VV and has thus been omitted for
readability.

A more interesting result, however, is that the existence of hidden-ties in the
data actually improves the performance of both algorithms, compared to a smaller
dataset with the hidden tie observations omitted (the “filtered” versions in Fig-
ure 6). Our explanation for this phenomenon is that although hidden ties do not
provide useful information for learning the order on the relevant attributes, their
existence helps the algorithms identify the irrelevant attributes (because hidden
ties can increase the number of mistakes that would be caused only by the irrele-
vant attributes) and push them further up in the ranking (decreasing their impor-
tance), thus allowing the other observations to clarify the ordering of the identified
relevant attributes.

7.7. Effect of Noise
Figure 7 shows the average prediction performance of MV and G for prob-

lems with 10 relevant variables (R = 10) and five irrelevant variables (I = 5).
The total number of observations (No) is always 50 but the number of these ob-
servations that are faulty varies from 0 to 45 (x-axis). Figure 8 shows the worst
performance for the same setting.

The results show that both the average and the worst performance of MV
(which operates under the assumption of noise-free data) are significantly com-
promised by even small amounts of noise, which it interprets as a refutation of
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Figure 5: (a) Comparison of gMV and gV V for a data set with 15 relevant variables and no
irrelevant variables, where 1 is always the preferred value. (b) Comparison of gMV and gV V for
a data set with 5 relevant and 10 irrelevant variables, where the preferred value of each attribute is
chosen randomly.

the correct model (as well as many of the “almost correct” models). The asymp-
totic performance at 0.5 reflects the fact that this noise causes MV to eliminate
all of the models from its version space, causing it to predict a tie for every test-
ing observation (essentially making it a random selection algorithm). We omitted
the results for V V from the figure since V V ’s behavior closely resembled that
of MV . The performance of G decays far more gracefully than MV or V V be-
cause G allows for some of the observations to be discarded. In Figures 7 and 8,
we compare the average and worst performance of NAMV and GV to the other
algorithms presented in this paper, including “filtered” versions where the noisy
data was omitted (which provided as baselines). Notice that unlike the original
modelVote, which was confounded by even a small amount of noise, the gentle

28



Figure 6: The prediction performance of V V and G for varying number of hidden ties in 50
observations. The results for filtered V V and G are obtained by eliminating the hidden ties from
the observations.

decays of NAMV and GV mirror the greedy approach’s robustness to noise and
perform comparably on this data set. Asymptotically, if all of the observations are
noisy, NAMV still performs better than modelVote in the average case (a statis-
tically significant result), because it does not eliminate all of the possible models,
so instead of defaulting to random selection, it favors the test observation with the
most 1s. Among the two noise adaptations of MV , GV demonstrates the best
worst-case performance (for noise levels 10 to 25 the difference between GV and
NAMV is statistically significant).

7.8. Effect of Background Knowledge on Performance
Figure 9 shows the positive effect of incorporating background knowledge on

the performance of voting algorithms for R = 10, I = 0, and NT = 20, as
NO ranges from 2 to 20. In addition, this experiment aims to show that back-
ground knowledge does not undermine the advantage that voting algorithms held
over the greedy algorithm in the knowledge-free case. To this end, we have triv-
ially generalized G to produce LPMs that are consistent with given background
knowledge B. The data points are averages over 20 different pairs of training and
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Figure 7: The average prediction performance of model voting, greedy, NAMV , and GV as the
number of noisy observations increases.

test sets (O, T ). We have arbitrarily picked two weak orderings to use as back-
ground knowledge: B1 : {X1, X2, X3, X4, X5} < {X6, X7, X8, X9, X10} and
B2 : {X1, X2, X3} < {X4, X5} < {X6, X7, X8} < {X9, X10}. The performance
of V V improved greatly with the introduction of each ordering as background
knowledge. B2 is stronger than B1, and therefore prunes the space of consistent
LPMs more than B1. As a result, the performance gain due to B2 is greater than
that due to B1. The difference between the performance with background knowl-
edge and without background knowledge is statistically significant except at the
last point. Note that using background knowledge is are particularly effective
when the number of training observations is small. The worst-case performance
of G with background knowledge B1 and B2 are also shown in Figure 9. In both
cases, the worst-case performance ofG is significantly lower than the performance
of V V with the corresponding background knowledge.

Using the same experimental scenario, we obtained very similar results with
MV , as seen in Figure 10. In summary, the worst case performance of greedy al-
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Figure 8: The worst prediction performance of model voting, greedy, NAMV , and GV as the
number of noisy observations increases.

gorithm with background knowledge B2 outperforms the average performance of
MV without any background knowledge. However, even with weaker knowledge,
such as B1, the average performance of MV is better than G with B2.

8. Related Work

The concept of lexicographic comparisons is commonplace in everyday life.
Expressions such as “safety first,” “above all else do no harm,” or “quality is
job one” all evoke lexicographic preferences. Lexicographic rankings are often
used in sporting events. For example, countries competing in the Olympics are
typically ranked by total medals, then gold medals, then silver medals [17]. The
winner of the Netflix prize was chosen by ranking submissions first by minimum
test error, then by earliest submission [13].

Lexicographic utilities have been applied to understanding human prefer-
ences [19, 11]. They have an extensive mathematical foundation that has been
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Figure 9: The effect of background knowledge on V V and G, using two arbitrarily selected weak
orderings as background knowledge, where B2 is stronger (more constraining) than B1.

studied in the economics, psychological, and management science literatures [8].
Lexicographic orders and other preference models have been utilized in several
research areas, including multicriteria optimization [1], linear programming [5],
and game theory [14].

The most relevant existing work for learning and/or approximating LPMs is
by Schmitt and Martignon [16] and Dombi et al. [7], which were summarized in
Section 2.

In general, preferences and ranking are similar. The ranking problem, as de-
scribed by Cohen et al. [3], is similar to the problem of learning an LPM. However,
that line of work poses learning as an optimization problem, with the goal of find-
ing the single ranking that maximally agrees with the given preference function.
In particular, their approach constructs a collection of domain-specific “ranking
experts” whose predictions are combined using a model voting scheme. The vot-
ing concept is similar in spirit to our approach, but the underlying representations
are quite different.

Torrey et al. [18] employ an inductive logic programming approach to learn
multi-attribute ranking rules. In principle, these rules can represent lexicographic
preference models.
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Figure 10: The effect of background knowledge on average MV performance, using two arbitrar-
ily selected weak orderings as background knowledge, where B2 is stronger than B1.

Fürnkranz and Hüllermeier [10] investigate the pairwise preference learning
and ranking problem. The observations are a set of partially ranked objects and
the goal is to learn how to rank a new set of objects. Their approach is to reduce
the original problem to a number of binary classification problems, one for each
pair of labels. Hence, they make no assumptions about the underlying preference
model.

Boutilier et al. [2] consider a preference learning algorithm and representa-
tion (CP-Nets) for modeling preferences under a ceteris paribus (all else being
equal) assumption. However, this representation will not necessarily capture lexi-
cographic preference models, and is therefore not directly applicable to the prob-
lem we have considered.

Another analogy, described by Schmitt and Martignon [16], is between LPMs
and decision lists [15]. Specifically, it was shown that LPMs are a special case of
2-decision lists, but that the algorithms for learning these two classes of models
are not directly applicable to each other.

9. Conclusions and Future Work

In this paper, we presented democratic approximation methods for learning
lexicographic preference models (LPMs) given a set of preference observations.
Instead of committing to just one of the consistent LPMs, we maintain a set of
models and predict based on the majority of votes. We described two such meth-
ods: variable voting and model voting. We showed that both methods can be
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implemented in polynomial time and exhibit much better worst- and average-case
performance than the existing methods. Finally, we have defined a form of back-
ground knowledge that can be used to improve performance when the number
of observations is small; we incorporated this background knowledge into the
voting-based methods, significantly improving their empirical performance.

Future directions of this work allow for a number of extensions and further
theoretical investigations. Many of the theoretical bounds presented in this paper
could be tightened (such as the complexity bound of learnVariableRank) or po-
tentially defined in terms of simpler parameters (such as the sample size param-
eter for model vote), while still maintaining performance guarantees. We have
recently extended the basic LPM representation and learning techniques to sup-
port context-dependent preferences in the form of branching LPMs, including
methods for learning branching LPMs from noisy data [12]. We are also contin-
uing to investigate heuristics like NAMV and greedyVote that make them more
robust against noise. While the problem of learning LPMs from noisy data is
NP-complete, the superior performance of the voting algorithms over the greedy
method in the noise-free case indicates that it may be possible to identify and
characterize other restricted problem settings in which heuristic extensions such
as NAMV and greedyVote would significantly outperform the state-of-the-art
greedy approach.
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